ALGEBRA-II

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
II	21CPMA2A	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
			5	75	5	75		

COURSE OBJECTIVES

The students will be able to

- Study the concept of Field Extension, Roots of Polynomial, Galois Theory and Finite Fields.
- Understand Division Rings, Solvability by Radical and to develop computational skill in Abstract Algebra

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
C01	Introduce the concept of Extension Fields and Transcendence of e.	K3
CO2	Explain the relation between Roots of polynomials	K2
CO3	Construct the Elements of Galois Theory	K3
CO4	Discuss and understand the Wedderburn's Theorem on Finite Division Rings	K2
CO5	Analyze the concept of Solvability by Radicals, Integral Quaternion's and the Four Square Theorem.	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	S	М	S	М
CO2	М	S	М	М	S	М
CO3	S	S	М	S	М	S
CO4	М	М	S	S	М	S
CO5	М	S	S	М	S	S

S- Strong; M-Medium; L-Low

UNIT- I: FIELDS	18 Hours
Extension Fields – Transcendence of e – Roots of Polynomials.	
Chapter 5: Section 5.1 - 5.3.	
UNIT-II: POLYNOMIALS	18 Hours
More About Roots – Elements of Galois Theory.	
Chapter 5: Section 5.5 and 5.6	
UNIT-III: SOLVABILITY AND EXTENSION FIELDS	18 Hours
Solvability by Radicals – Galois Groups over the Rationals.	
Chapter 5: Section 5.7 and 5.8	
UNIT- IV: FINTITE FIELDS	18 Hours
Finite fields – Wedderburn's Theorem on Finite Division Rings.	
Chapter 7: Section 7.1 and 7.2	
UNIT- V: SELECTED TOPICS	18 Hours
A Theorem of Frobenius – Integral Quaternions and the Four – Square Theorem.	
Chapter 7: Section 7.3 and 7.4	

DISTRIBUTION OF MARKS: THEORY 90% AND PROBLEMS 10%

TEXT BOOK:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	I.N.Herstein	Topics in Algebra	Wiley India Pvt. Ltd.	2017
		(II Edition)		

REFERENCE BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	M. Artin	Algebra	Prentice Hall of	1991
			India	
2.	P.B.Bhattachara,	Basic Abstract Algebra	Cambridge	1997
	S.K.Jain, and		University.	
	S.R.Nagpaul			

WEB SOURCES:

- 1. http://lib1.org/_ads/680A08FE3A43250BF4683E477AB1997A
- 2. http://lib1.org/_ads/8F9FA5C07895D22659815E5D415E3C84

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER:

- 1. Mrs.B.Sarala, Assistant Professor of Mathematics.
- 2. Ms.R.Ramya, Assistant Professor of Mathematics.