CALCULUS OF VARIATIONS

Semeste \mathbf{r}	Subject Code	Category	Lecture		Theory		Practical	Credits
III	$21 C P M$ A3B	Core- Paper X	6	Hrs/Week	Hrs/Sem	Hrs/Week	Hrs/Sem	0

COURSE OBJECTIVES:
The students will be able to

- Understand the foundations of calculus of variations and its Applications in mathematics and physics.
- Formulate variational problems and analyse them to deduce key properties of system behavior.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
$\mathbf{C O 1}$	Use Euler-Lagrange equation or its first integral to find differential equations for stationary paths and solve simple initial and boundary value problems by using several independent variables of calculus.	K2
$\mathbf{C O 2}$	Understand the concept of differential, difference equation and Stochastic Calculus of Variations.	K 2
$\mathbf{C O 3}$	Solve variational problems with a movable boundary for a functional dependent on two functions and reflection and refraction of extremals and diffraction of light rays	K 3
$\mathbf{C O 4}$	Discuss the sufficient conditions for an extremum.	K 4
$\mathbf{C O 5}$	Analyze the complementary variational principles, Poisson bracket, contact transformations, the Hamilton - Jacobi equation, Clairaut's theorem and Noether's theorem.	K 4

Knowledge Level: K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze.
MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	M	M	S	M
CO2	S	M	S	S	M	S
CO3	M	M	S	S	M	S
CO4	S	S	S	M	M	S
CO5	M	S	M	M	S	M

S - Strong; M - Medium; L - Low

The Concept of Variation and Its Properties- Euler's Equation- Variational Problems for Functionals of the Form- Functionals Dependent On Higher-Order Derivatives- Functionals Dependent on Functions of Several Independent Variables- Variational Problems in Parametric Form.

Chapter 1: Sections 1.1-1.6

UNIT - II: VARIATIONAL PROBLEMS WITH FIXED BOUNDARIES (CONTINUED)

18 Hours

Some Applications to Problems of Mechanics- Variational Problems Leading to an Integral Equation or a Differential-Difference Equation- Theorem of du Bois-Reymond- Stochastic Calculus of Variations- Supplementary Remarks.

Chapter 1: Sections 1.7-1.11

UNIT - III: VARIATIONAL PROBLEMS WITH MOVING BOUNDARIES
18 Hours
Functional of the from - Variational Problem with a Movable Boundary for a Functional Dependent on Two Functions- One-Sided Variations- Reflection and Refraction of ExtremalsDiffraction of Light Rays.

Chapter 2: Sections 2.1-2.5
UNIT - IV: SUFFICIENT CONDITIONS FOR AN EXTREMUM
18 Hours
Field of Extremals- Jacobi Condition- Weirstrass Function- Legendre Condition- Second Variation- Canonical Equations and Variational Principles.

Chapter 3: Sections 3.1-3.6

UNIT - V: SUFFICIENT CONDITIONS FOR AN EXTREMUM (CONTINUED) 18 Hours
Complementary Variational Principles - Poisson Bracket - Contact Transformations- The Hamilton-Jacobi Equation- Clairaut's Theorem- Noether's Theorem.

Chapter 3: Sections 3.7-3.12

DISTRIBUTION OF MARKS: THEORY 80\% AND PROBLEMS 20\%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	A.S.Gupta	Calculus of Variations with Applications, $14^{\text {th }}$ Edition	PHI Learning Private Limited, Delhi.	2019

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	I.M. Gelfandand S.V.Fomin	Calculus of Variations	Prentice Hall, New Jersey	1963
2.	Weinstock	Calculus of Variations	McGraw Hill	2000

WEB RESOURCES

1. Calculus of Variations
2. Introduction to the Calculus of Variation

TEACHING METHODOLOGY

1. Class room teaching
2. Giving Assignments for all units
3. Discussions
4. Home test
5. PPT presentation

SYLLABUS DESIGNER

1. Mrs. S.Baby Shalini, Assistant Professor of Mathematics.
2. Mrs.R.Ramya, Assistant Professor of Mathematics.
