Semeste r	Subject Code	Category	Lect	ure	The	ory	Practical	Credits
III	21CPM	Core –	Hrs/Week	Hrs/Sem	Hrs/Week	Hrs/Sem	0	5
	A3B	Paper X	6	90	6	90		

CALCULUS OF VARIATIONS

COURSE OBJECTIVES:

The students will be able to

- Understand the foundations of calculus of variations and its Applications in mathematics and physics.
- Formulate variational problems and analyse them to deduce key properties of system behavior.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Use Euler-Lagrange equation or its first integral to find differential	
	equations for stationary paths and solve simple initial and	K2
	boundary value problems by using several independent variables of	
	calculus.	
CO2	Understand the concept of differential, difference equation and	K2
	Stochastic Calculus of Variations.	
CO3	Solve variational problems with a movable boundary for a	K3
	functional dependent on two functions and reflection and refraction	
	of extremals and diffraction of light rays	
CO4	Discuss the sufficient conditions for an extremum.	K4
CO5	Analyze the complementary variational principles, Poisson bracket,	K4
	contact transformations, the Hamilton - Jacobi equation, Clairaut's	
	theorem and Noether's theorem.	

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	М	М	S	М
CO2	S	М	S	S	М	S
CO3	М	М	S	S	М	S
CO4	S	S	S	М	М	S
CO5	М	S	М	М	S	М

 $S-Strong;\,M-Medium;\,L$ - Low

UNIT - I: VARIATIONAL PROBLEMS WITH FIXED BOUNDARIES 18 Hours

The Concept of Variation and Its Properties- Euler's Equation- Variational Problems for Functionals of the Form- Functionals Dependent On Higher-Order Derivatives- Functionals Dependent on Functions of Several Independent Variables- Variational Problems in Parametric Form.

Chapter 1: Sections 1.1 - 1.6

UNIT - II: VARIATIONAL PROBLEMS WITH FIXED BOUNDARIES (CONTINUED) 18 Hours

Some Applications to Problems of Mechanics- Variational Problems Leading to an Integral Equation or a Differential-Difference Equation- Theorem of du Bois-Reymond- Stochastic Calculus of Variations- Supplementary Remarks.

Chapter 1: Sections 1.7 - 1.11

UNIT - III: VARIATIONAL PROBLEMS WITH MOVING BOUNDARIES 18 Hours

Functional of the from – Variational Problem with a Movable Boundary for a Functional Dependent on Two Functions- One-Sided Variations- Reflection and Refraction of Extremals-Diffraction of Light Rays.

Chapter 2: Sections 2.1 - 2.5

UNIT - IV: SUFFICIENT CONDITIONS FOR AN EXTREMUM 18 Hours

Field of Extremals- Jacobi Condition- Weirstrass Function- Legendre Condition- Second Variation- Canonical Equations and Variational Principles.

Chapter 3: Sections 3.1 - 3.6

UNIT - V: SUFFICIENT CONDITIONS FOR AN EXTREMUM (CONTINUED) 18 Hours Complementary Variational Principles - Poisson Bracket - Contact Transformations- The Hamilton-Jacobi Equation- Clairaut's Theorem- Noether's Theorem.

Chapter 3: Sections 3.7 - 3.12

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS 20%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	A.S.Gupta	Calculus of Variations	PHI Learning Private	2019
		with Applications, 14 th	Limited, Delhi.	
		Edition		

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	I.M. Gelfandand	Calculus of	Prentice Hall, New	1963
	S.V.Fomin	Variations	Jersey	
2.	Weinstock	Calculus of	McGraw Hill	2000
		Variations		

WEB RESOURCES

- 1. Calculus of Variations
- 2. Introduction to the Calculus of Variation

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

SYLLABUS DESIGNER

- 1. Mrs. S.Baby Shalini, Assistant Professor of Mathematics.
- 2. Mrs.R.Ramya, Assistant Professor of Mathematics.