Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
II	21CPMA2D	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	5
			6	90	6	90		

DIFFERENTIAL GEOMETRY

COURSE OBJECTIVES

The students will be able to

- This course introduces space curves and their intrinsic properties of a surface and geodesics.
- The non intrinsic properties of surface and the differential geometry of surfaces are explored.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Acquire knowledge on the concept of Space Curves	K2
CO2	Understand the intrinsic properties of Surfaces	K2
CO3	Study the concept of Geodesics and its properties	K3
CO4	Understand and discuss the importance of the concepts non intrinsic properties of surface	K4
CO5	Analyze the surface theory	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	S	М
CO2	М	S	М	М	S	М
CO3	S	S	М	S	М	S
CO4	М	М	S	S	М	S
CO5	М	S	S	М	S	S

S- Strong; M- Medium; L- Low

UNIT – I - SPACE CURVES

Definition of a space curve – Arc length – Tangent – Normal and Binormal – Curvature and torsion – contact between curves and surfaces – Tangent surface – Involutes and evolutes – Intrinsic equations – Fundamental Existence Theorem for Space curves – Helices.

Chapter 1: Section 1 to 9.

UNIT –II - INTRINSIC PROPERTIES OF A SURFACE 18 Hours

Definition of a surface – Curves on surface – Surface of revolution – Helicoids – metric – Direction coefficients – Families of curves – Isometric correspondence – Intrinsic properties.

Chapter 2: sections 1 to 9.

UNIT –III – GEODESICS

Geodesics – Canonical geodesic equation – Normal property of geodesics – Existence theorem - geodesics parallels – geodesics Curvature-Gauss-Bonnet Theorem- Gaussian curvature –Surface of constant curvature.

Chapter 2: sections 10 to 18.

UNIT –IV - NON INTRINSIC PROPERTIES OF A SURFACE 18 H

The second fundamental form – Principal curvature – Lines of curvature – Developable – Developable associated with space curves and with curves on surface – Minimal surfaces –Ruled surfaces.

Chapter 3: sections 1 to 8.

UNIT – V - DIFFERENTIAL GEOMETRY OF SURFACES 18 Hours

Fundamental equations of surface theory – Fundamental Existence theorem for surfaces – Compact surfaces whose points are umblics – Hilbert's lemma – Compact surface for constant curvature – Complete surfaces.

Chapter 3: sections 9 and 10.

Chapter 4: sections 1 to 5.

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS: 20%

18 Hours

18 Hours

18 Hours

TEXT BOOKS:

	AUTHORS	IIILE	PUBLISHERS	YEAR OF PUBLICATION
1. Т		An Introduction to Differential Geometry	Oxford University Press	

REFERENCE BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	J.A. Thorpe	Elementary Topics in	Springer	1994
		Differential Geometry		
2.	D. Somasundaram	Differential Geometry	Alpha Science	2005
			International	
			Limited.	

WEB SOURCES:

- 1. www.pmp-book.org/download/slides/Differential_Geometry.pdf
- 2. https://mgarland.org/class/geometry/topics/diffgeom.pdf

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER:

1. Mrs.Dr.T.Ranjani, Assistant Professor of Mathematics.