GRAPH THEORY

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
I	21CPMA1E	Elective	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
			6	90	6	90		

COURSE OBJECTIVES:

The students will be able to

- Graph Theory is an integral part of Discrete Mathematics and has applications in diversified areas such as Electrical Engineering, Computer science, Linguistics.
- In this course basic concepts of Graph theory such as Trees, Eulerian Graphs, Matching, Vertex colorings, Edge colorings, Planarity, are introduced.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Acquire the basic knowledge of graphs namely cut vertex, bridge, blocks of graph.	K2
CO2	Determine the properties of trees and connectivity	К3
CO3	Justify Eulerian graphs and Hamiltonian graphs	К3
CO4	Discuss the importance of Matchings and Colorings	K4
CO5	Apply the concept of Planarity including Euler identity	К3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	S	M	S	M
CO2	M	S	M	M	S	M
CO3	S	S	M	S	M	S
CO4	M	M	S	S	M	S
CO5	M	S	S	M	S	S

S- Strong; M-Medium; L-Low

UNIT-I -GRAPHS, SUB GRAPHS AND TREES

18 Hours

Graph—Graph isomorphism and simple graph - The Incidence and adjacency matrices- Subgraphs

-Vertex degrees- Paths and Connection - Cycles -trees - Cut Edges and Bonds - Cut Vertices.

Chapter 1 [section 1.1 to 1.7]

Chapter 2 [section 2.1 to 2.3]

UNIT - II - CONNECTIVITY EULER TOURS AND HAMILTON CYCLES 18 Hours

Connectivity – Blocks – Euler tours – Hamilton cycles.

Chapter 3 [section 3.1 to 3.2]

Chapter 4[section 4.1 to 4.2]

UNIT - III - MATCHINGS, EDGE COLORINGS

18 Hours

Matching's - Matching's and coverings in Bipartite Graphs – Edge Chromatic Number – Vizing's Theorem.

Chapter 5 [section 5.1 - 5.2]

Chapter 6 [section 6.1 - 6.2]

Unit – IV - INDEPENDENT SETS AND CLIQUES, VERTEX COLOURINGS 18 Hours

Independent sets – Ramsey's Theorem- Chromatic Number – Brooks' Theorem – Chromatic polynomials.

Chapter 7[section 7.1 - 7.2]

Chapter 8 [section 8.1-8.2, 8.4]

Unit-V - PLANAR GRAPHS

18 Hours

Plane and Planar Graphs – Dual Graphs – Euler's Formula – The Five Colour Theorem and four colour conjecture.

Chapter 9 [section 9.1 - 9.3, 9.6]

DISTRIBUTION OF MARKS: THEORY 90% AND PROBLEMS 10%

TEXT BOOKS:

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR	OF
				PUBLICATION	
1	J.A Bondy and	Graph Theory With	McMillan	1976	
	USR Murty	Applications			

REFERENCE BOOKS:

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	J.Clark and D.A	A first look at Graph	Allied publishers	1995
	Holton	theory		
2	R.Gould	Graph theory	Benjamin /	1989
			Cummings	
3	A.Gibbons	Algorithmic Graph	Cambridge	1989
		Theory	University Press	
4	R.J. Wilson	Introduction to	Pearson Education	2004
		Graph Theory		
5	S.A. Choudum	A First Course in	MacMillan India Ltd	1987
		Graph Theory		

WEB SOURCES:

- 1. https://iversity.org/blog/introduction-graph-theory/
- 2. http://www.hamilton.ie/ollie/Downloads/Graph.pdf

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5 .PPT Presentations

SYLLABUS DESIGNER:

1. Mrs. R.Ramya, Assistant Professor of Mathematics.