Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21CPMA3E	Elective	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		Paper III	6	90	6	90		

NUMERICAL ANALYSIS

COURSE OBJECTIVES:

The students will be able to

- Solve the non-linear equations, interpolation, differentiation and integration using Numerical Methods.
- Improve their skills and the scientific computation techniques in numerical methods

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1- K4)
	Apply the numerical methods (such as Bisection, Regula falsi	
CO1	method, Newton-Raphson) to solve the nonlinear equations.	K3
CO2	Solve problems using Gauss Seidal, Relaxation and iterative	K3
	methods in system of linear equations	
CO3	Apply the knowledge of interpolation in analyzing the data	K3
CO4	Apply the concepts of numerical differentiation and numerical	K3
	integration, errors and accuracy of data and functions	
CO5	Construct the numerical method to solve an ordinary differential	K3
	equations.	

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	S	S	М
CO2	М	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT - I: FINITE DIGIT ARITHMETIC AND ERRORS

Floating point arithmetic- Propagated error, Generated Error - Error in Evaluation of a function f(x).

Chapter 1: 1.1 to 1.4

Non linear equation: Bisection method - Secant method - Regular -falsie method - Newton's method - Muller's method - Fixed point method - Newton's method for multiple roots.

Chapter 2: 2.1 to 2.7

UNIT – II: SYSTEM OF LINEAR EQUATIONS

Gauss - elimination method - Gauss Jordan method - Evaluation of determinant algorithm of gauss - Elimination - Crout's method - Inverse of matrix- Condition numbers and errors - Iterative methods - Gauss - Siedal method - Relaxation method.

Chapter 3: 3.1 to 3.5, 3.6.

UNIT - III: INTERPOLATION

Lagrangian interpolating polynomial - Error in Lagrangian interpolation - Newton's form of interpolating polynomial - Newton's divided differences - Newton's divided difference form of polynomial - Error in Newton's divided difference form - Divided differences for repeated abscissa - Newton's forward form and Newton's backward form interpolation with repeated abscissa- Hermits interpolating polynomial - Oscillatory interpolating polynomial.

Chapter 4: 4.1 to 4.4

UNIT - IV: NUMERICAL DIFFERENTIATION AND INTEGRATION18 HoursNumerical differentiation - Numerical integration - Newton - cotes formulas method of
undetermined parameters - Gaussian quadratures -double integral.18 Hours

Chapter 5: 5.1 to 5.5 and 5.7 [omit 5.6]

UNIT - V: ORDINARY DIFFERENTIAL EQUATIONS 18 Hours

Difference equation - Differential equations: Single step methods- Global error in Euler's method and its convergence - Runge -Kutta method- Multistep methods- system of differential equations.

Chapter6: 6.1 to 6.5

18 Hours

18 Hours

18 Hours

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Devi Prasad.	An Introduction to Numerical Analysis House (3 rd edition)	Narora Publishing House, New Delhi.	2003

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Conte and de	Numerical Analysis	McGraw Hill,	1990
	Boor		New York	
2.	John H.	Numerical methods for	Prentice Hall,	2000
	Mathews,	Mathematical Science and engineering [2 nd	New Delhi	
		Edition]		

WEB RESOURCES

- 1.https://fac.ksu.edu.sa/sites/default/files/numerical_analysis_9th.pdf
- 2. http://www.ikiu.ac.ir/public-files/profiles/items/090ad_1410599906.pdf

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNERS

Ms. C.Revathi, Assistant Professor of Mathematics.