Semester	Subject Code	Category	Lecture		Theory	Practical	Credits
			Hrs/Week	Hrs/Sem			
Ι	21CPMA1C	Core	6	90	6	0	5

ORDINARY DIFFERENTIAL EQUATIONS

COURSE OBJECTIVES:

The students will be able to

- Develop strong background on finding solutions to linear differential equations with constant and variable coefficients and also with singular points
- Study existence and uniqueness of the solutions of first order differential equations.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level(K1- K4)
C01	Obtain solutions of the Homogenous equation with constant co- efficient and Homogenous equation with analytic co-efficient and using Wronskian to find a solution of the problems.	K2
CO2	Obtain the solution of Homogenous and Non- homogenous equation of order n and also to find the solution of non- homogenous equation using Annihilator method.	К3
CO3	Solving Initial value problems and to derive the homogenous equation with analytic coefficient and also obtain the solution of Legendre equation and related problems.	K4
CO4	Comprehend the Euler equations, the Bessel equation and second order equations with regular singular points.	K2
CO5	Analyze the problems in Exact equation and method of convergence of the successive approximations and study about Lipschitz condition.	К3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	М	S	М	S
CO2	М	М	S	М	S	Μ
CO3	S	S	S	М	S	S
CO4	М	М	М	М	М	S
CO5	S	М	S	S	S	М

S- Strong; M- Medium; L- Low

UNIT I -LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 18 Hours

Second order homogeneous equations – Initial value problems – Linear dependence and independence – Wronskian and a formula for Wronskian – Non – homogeneous equation of order two.

Chapter - 2: Sections 1 to 6.

UNIT II - LINEAR EQUATIONS WITH CONSTANT COEFICIENTS 18 Hours

 $Homogeneous \ and \ non-Homogeneous \ equation \ of \ order \ n-Initial \ value \ problems-Annihilator \ method \ to \ solve \ non-homogeneous \ equation-Algebra \ of \ constant \ coefficient \ operators.$

Chapter- 2: Sections 7 to 12.

UNIT III - LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS: 18 Hours

Initial value Problems – Existence and uniqueness theorems – Solutions to solve a non – homogeneous equation – Wronskian and linear independence – reduction of the order of a homogeneous equation – homogeneous equation with analytic coefficients – The Legendre equation.

Chapter- 3: Sections 1 to 8 [Omit Section 9]

UNIT IV - LINEAR EQUATIONS WITH REGULAR SINGULAR POINTS: 18 Hours

Euler equation – Second order equations with regular singular points – Exceptional cases – Bessel Equation.

Chapter – 4: Sections 1 to 4 and 6 to 8 [Omit sections 5 and 9]

UNIT V - EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FIRST ORDER EQUATIONS: 18 Hours

Equations with variables separated – Exact equations – method of successive approximations – the Lipschitz condition – convergence of the successive approximations and the existence theorem.

Chapter – 5: Sections 1 to 6 [Omit sections 7 to 9].

DISTRIBUTION OF MARKS: THEORY 70% AND PROBLEMS 30%.

TEXT BOOK:

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	Earl A.	An Introduction to Ordinary	PHI learning	2009
	Coddington	Differential Equations	Private Limited,	
			New Delhi.	

REFERENCE BOOKS:

S.No.	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1		Elementary	John Wiley and	
	Williams E. Boyce	differential equations	sons, New York	1967
	and Richard C. Dl	and boundary value		
	Prima	problems		
2		Differential equation	Tata McGraw Hill,	
	George F Simmons	with applications and	New Delhi	1974
		historical notes		
3		Special functions and	Prentice Hall of	
	N.N. Lebedev	their application	India, New Delhi	1965
4		Ordinary Differential	John Wiley and	
	W.T. Reid	Equations,	Sons, New York	1971
5		Advanced	S.Chand&Company	
	M.D.Raisinghania	Differential	Ltd. New Delhi	2001
		Equations		
6		A Course in Ordinary	Narosa Publishing	
	B.Rai,	Differential	House, New Delhi,	2002
	D.P.Choudary and	Equations,		
	H.I Freedman			

WEB SOURCES:

1. http://www.amazon.com/Ordinary-differential-equation-Dover-

Mathematics/dp/6486649407/ref = sr 1 1?

2. https://open.umn.edu/open text books/text books/ Ordinary-differential-equation

TEACHING METHODOLOGY:

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations.

SYLLABUS DESIGNER:

1. Mrs. B. Vijayalakshmi, Assistant Professor of Mathematics.