PROBABILITY THEORY

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21CPMA3D	Core –	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	5
		Paper XII	6	90	6	90		

COURSE OBJECTIVES:

The students will be able to

- Understand axiomatic approach to probability theory
- Study some statistical characteristics, discrete and continuous distribution functions and their properties, characteristic function and basic limit theorems of probability.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level (K1-K4)
CO1	Understand the important concepts of the random experiments.	K2
CO2	Explain about the properties of characteristic function and find distribution function by the characteristic function.	K3
CO3	Examine a random variable or to characterize its distribution by a few parameters of the random variable.	K3
CO4	Apply discrete and continuous distributions in detail that plays an important role in many engineering applications as special probability distributions.	K3
CO5	Learn the concept of convergence in probability and prove naming theorems for independently and identically distributed random variables	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAM ME OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	М	S
CO2	S	М	S	М	М	S
CO3	S	S	М	М	S	S
CO4	S	М	S	S	М	S
CO5	S	S	М	М	М	S

S- Strong; M – Medium; L – Low

UNIT- I: RANDOM EVENTS AND RANDOM VARIABLES

Random events – Probability axioms – Combinatorial formulae – conditional probability – Bayes Theorem – Independent events – Random Variables – Distribution Function – joint Distribution – Marginal Distribution – Conditional Distribution - Independent random variables – Functions of multi dimensional random variables.

Chapter 1: Sections 1.1 to 1.7

Chapter 2: Sections 2.1 to 2.9

UNIT- II: PARAMETERS OF THE DISTRIBUTION

Expectation – Moments – The Chebyshev's Inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first and second types.

Chapter 3: Sections 3.1 to 3.8

UNIT-III: CHARACTERISTIC FUNCTIONS

Properties of characteristic functions – Characteristic functions and moments – semi – invariants – characteristic function of the sum of the independent random variables –Determination of distribution function by the Characteristic function – Characteristic function of multidimensional random vectors – Probability generating functions

Chapter 4: Sections 4.1 to 4.7

UNIT- IV: SOME PROBABILITY DISTRIBUTIONS 18 Hours

One point, two point, Binomial – Polya –Hypergeometric – Poisson [discrete] distributions – Uniform – normal gamma – Beta – Cauchy and Laplace [continuous] distributions.

Chapter 5: Section 5.1 to 5.10

UNIT-V: LIMIT THEOREMS

Stochastic convergence – Bernoulli law of large numbers – Convergence of sequence of distribution functions – Levy-Cramer Theorems – De Moivre Laplace theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers –Lindberg Theorem –Lyapunov theorem-Borel-Cantelli Lemma – Kolmogorov Inequality and Kolmogorov Strong law of large numbers

18 Hours

18 Hours

18 Hours

18 Hours

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS 20%

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	MarekFisz	Probability Theory and Mathematical Statistics	John Wiley and Sons, New York	1963

REFERENCE BOOKS:

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	R.B. Ash	Real Analysis and	Academic Press,	1972
		probability	New York	
2.	K.L.Chung	A Course in Probability	Academic Press,	1974
			New York	
3.	R.Durrett	Probability Theory and	Duxbury press, New	1996
		Examples [2 nd Edition]	York	
4.	V.K.	An Introduction to	Wiley Eastern Ltd.,	1988
	Rohatgi	Probability Theory and	New Delhi	
	_	Mathematical		
		Statistics[3 rd print]		
5.	S.I.Resnick	A Probability Path	Birhauser, Berlin	1999
6.	B.R. Bhat	Modern Probability	New Age	1999
		Theory [3 rd Edition]	International [P] Ltd,	
			New Delhi	

WEB SOURCES:

1. www.researchgate.net/publication/272237355_probability_and_mathematical_statistics.pdf

2. www.freebookcentre.net/Mathematics/Probability-Theory-Book.html

SYLLABUS DESIGNER

Dr. T.Ranjani, Assistant Professor of Mathematics.