Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
IV	21CM	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
	A4A	paper – VI	4	60	4	60		

CORE PAPER -VI - ABSTRACT ALGEBRA

COURSE OBJECTIVES:

The students will be able to

- Understand the theoretical concepts of algebra and to develop abstract thinking in algebra.
- Acquire knowledge on the basic theory of group, Cayley 's theorem, homomorphism, ring and ideal etc.,
- Learn the basic ideas and notions of abstract algebra which includes ring and field theory.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Provide an insight on theoretical knowledge about Group, Sub- group and its examples and prove Lagrange's theorem and its related concepts.	К3
CO2	Understand the notion of Counting Principle, Normal Subgroups, Homomorphism and theorems related to it.	К3
CO3	Acquire the knowledge about Automorphisms, Cayley's theorem and permutation group	К3
CO4	Explore the concepts of theory of Rings, Integral domain and homomorphism.	К3
CO5	Gain knowledge about the Ideal, Prime ideal, Maximal ideal, Euclidean ring and related theorems.	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAM ME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	S
CO2	S	S	М	М	М	S
CO3	М	S	М	М	S	S
CO4	S	М	S	S	М	М
CO5	S	S	S	М	М	S

S- Strong M-Medium L-Low

UNIT – I: GROUPS	12 Hours
Definition of a Group – Examples – Subgroups, Lagrange's theorem- Corollary –	Simple
Theorems.	
(Sections: 2.1 to 2.4)	
UNIT – II: GROUPS (Contd.)	12 Hours
Counting Principle – Normal Subgroups – Homomorphisms – Theorems – Simple	Problems.
Section: 2.5 to 2.7 (Omit applications of 1 and 2 of 2)	
UNIT – III: GROUPS (Contd.)	12 Hours
Automorphisms – Cayley's Theorem – Permutation Groups.	
(Sections: 2.8 to 2.10)	
UNIT – IV: RINGS	12 Hours
Definition and Examples – Integral Domain – Homomorphism of Rings	
(Sections: 3.1 to 3.4)	
UNIT – V: RINGS (Contd.)	12 Hour
Idea: Prime Ideal and Maximal Ideal – Simple Theorems – Euclidean rings	
(Sections: 3.5 to 3.7)	

DISTRIBUTION OF MARKS: THEORY 90% AND PROBLEMS 10%

TEXT BOOK

S.NO	AUTHORS TITLE		PUBLISHERS	YEAR OF
				PUBLICATION
1.	I.N.	Topics in	Wiley Eastern Ltd, New	1989
	Herstein	Algebra	Delhi(2 nd Edition)	

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	S. Arumugam	Modern Algebra.	Scitech Publications, Chennai	2004

2.	J.B.Fraleigh	A First Course in	Addison Wesley, Mass.	1987
	Algebra		(Indian Print) (3 rd	
			Edition)	
3.	Lloyd R.	Abstract Algebra	Tata McGraw Hill	2005
	Jaisingh and		Edition, New Delhi	
	Frank Ayres		(2 nd Edition),	
4.	M.L. Santiago	Modern Algebra	Tata McGraw Hill, New	2002
			Delhi.	

WEB RESOURCES

- 1. http://www.math.clemson.edu/~macaule/math4120-online.html
- 2. http://archives.math.utk.edu/topics/abstractAlgebra

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

SYLLABUS DESIGNER

Mrs. B. Vijayalakshmi, Assistant Professor of Mathematics.