CORE PAPER -X - OPERATIONS RESEARCH - I

Semester	Subject Code	Category	Lect	ure	The	eory	Practical	Credit s
V	21CMA5D	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		paper –X	5	75	5	75		

COURSE OBJECTIVES:

The students will be able to

- Develop computational skills and logical thinking in formulating Industry oriented problems as a mathematical problem and finding solutions to these problems.
- Solve the formulation techniques and optimization techniques of socially relevant problems.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Understand about operations research and the formation of Linear Programming Problem	K2
CO2	Solve Linear Programming problem using Big – M method and Duality	K3
CO3	Find optimum solutions for transportation problems	К3
CO4	Assign each source to each destination using assignment problems	К3
CO5	Analyze the results for various real life mathematical problems using inventory models	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	M	M	S	M
CO2	M	S	S	M	M	S
CO3	S	S	M	S	M	M
CO4	S	M	S	M	M	S
CO5	S	S	M	M	S	M

S- Strong M-Medium L-Low

UNIT I: LINEAR PROGRAMMING PROBLEM

15 Hours

Introduction to Operations Research – General Linear Programming Problem – Mathematical formulation of LPP – Graphical solution – Simplex Algorithm – Simple Problems.

(Chapter 1: Sections 1.1 to 1.23

Chapter 2: Sections 2.6 to 2.16)

UNIT II: ARTIFICIAL VARIABLE TECHNIQUE AND DUALITY 15 Hours

Artificial Variable Technique – Big – M method – Duality – Primal and Dual relation – Simple Problems.

(Chapter 2: Sections 2.17 (2.17-1) and 2.18)

UNIT III: TRANSPORTATION PROBLEM

15 Hours

 $\label{lem:transportation} Transportation\ -\ Mathematical\ formulation\ -\ Initial\ Basic\ Feasible\ Solution\ -\ The\ Transportation\ Algorithm\ (MODI\ Method)\ -\ Unbalanced\ transportation\ problem.$

(Chapter 3: Sections 3.1 to 3.7)

UNIT IV: ASSIGNMENT PROBLEM

15 Hours

Assignment problem – The assignment algorithm (The Hungarian Assignment Method) – Unbalanced Assignmentproblems –Profit Maximization Problems.

(Chapter 4: Sections 4.1 to 4.7)

UNIT V: INVENTORY MODELS

15 Hours

Inventory models – EOQ model – (a) Uniform demand rate, Infinite production rate with no shortages, (b) Uniform demand rate, Finite production rate with no shortages – Simple Problems.

(Chapter 12: Sections 12.1 to 12.5)

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS 90% TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	Gupta P.K.	Problems in	Sultan Chand &	2000
	and Hira D.S.	Operations Research	Sons, New Delhi	

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	KantiSwaroop	Problems in	Sultan Chand &	2002
	and Gupta P.K.	Operations	Sons, New Delhi	
	Manmohan	Research		
2.	H. A. Taha	Operations	Macmillan	2003
		Research	Publishing Company,	
			New York	
3.	P. R. Vittal	Operations	Margham	2003
		Research	Publications,	
			Chennai	
4.	J. K. Sharma	Operations	Macmillan, Delhi	2001
		Research:		
		Theory and		
		Applications		

WEB RESOURCES

- 1. https://www.maths.unp.ac.za/coursework/MATH331/2012/linearprogramming.pdf
- $2. \ \ https://towards datascience.com/operations-research-in-r-transportation-problem-ldf 59961b2ad$

SYLLABUS DESIGNER

Dr. M. Kasthuri, Assistant Professor of Mathematics