Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21CMA3B	Elective I	Hrs/Week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
			4	60	4	60		

ELECTIVE – I - FOURIER ANALYSIS

COURSE OBJECTIVES:

The students will be able to

- Understand the basic concepts of Fourier series and Fourier transforms and will solve problems in these fields of study.
- Find solutions to the differential equations. The portion on Fourier Transforms will help the students to do research in pure and applied mathematics.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Derive Fourier series of a given periodic function by evaluating Fourier coefficients	K2
CO2	Understand the nature of Fourier series that represent odd and even functions	K2
CO3	Expand an odd or even function as a half-range cosine or sine Fourier Series	K3
CO4	Compute Fourier Transform of sine and cosine integrals	K2
CO5	Solve the problems using Convolution Theorem and Parseval's Identity	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	М
CO2	S	М	S	М	S	М
CO3	М	S	М	S	М	S
CO4	S	М	S	S	М	S
CO5	М	S	S	М	S	S

S- Strong; M-Medium; L-Low

UNIT I: FOURIER SERIES

Dirichlet's conditions - Euler's formulae - Functions having Discontinuity - Fourier series in the interval $(0,2\pi)$ and $(-\pi,\pi)$.

UNIT II: FOURIER SERIES: (Contd.)

Fourier Expansions of odd and even functions in the interval $(-\pi, \pi)$ - Change of interval -Fourier series in the interval (0,2l) and (-l,l).

UNIT III :FOURIER SERIES: (Contd.)

Half- range Sine and Cosine series - Typical wave forms - Parseval's identity.

UNIT IV :FOURIER TRANSFORMS:

Definition - Fourier integrals - Fourier sine and cosine integrals - Fourier sine and cosine Transform – Simple Problems.

UNIT V : FOURIER TRANSFORMS: (Contd.)

Properties of Fourier Transforms - Convolution Theorem for Fourier Transforms (without proof) – Parsaval's Identity – Simple Problems.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS: 80%

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	P.R.Vittal and	Vector Calculus,	Margham	2004
	V.Malini	Fourier Series and	Publications,	
		Fourier Transform	Chennai	
2.	Dr. A.	Transforms and	Meenakshi Agency	2013
	Singaravelu	Partial Differential		
		Equations		

TEXT BOOK

12 Hours

12 Hours

12 Hours

12 Hours

12 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE PUBLISHERS		YEAR OF
				PUBLICATION
1.	S. Narayanan and	Calculus	S.Viswanathan	2004
	T.K.Manicavachago		Printers & Publishers	
	mPillay		Pvt. Ltd. Chennai	
2.	B.S.Grewal	Higher	Khanna Publishers,	2002
		Engineering	New Delhi	
		Mathematics		
3.	G.B. Thomas and	Calculus and	Wesley (9 th Edn),	1998
	R.L.Finney	Analytic	Mass. (Indian Print)	
		Geometry		
4.	M.K.Venkataraman	Engineering	National Publishing	1992
		Mathematics	Company, Chennai.	
		– Part B		

WEB RESOURCES

- 1. https://www.doverpublications.com/Fourier Series
- 2. https://www.springers.com/Fourier Series

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5.PPT** Presentations

SYLLABUS DESIGNER

Mrs.R.Ramya, Assistant Professor of Mathematics.