Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
VI	21CMA6E	Elective	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		-IV	5	75	5	75		

ELECTIVE -IV - OPERATIONS RESEARCH - II

COURSE OBJECTIVES:

The students will be able to

- Develop computational skill and logical thinking in formulating industry oriented problems as a mathematical problem and finding solution to these problems.
- Understand the mathematics of Information Theory at the basic level.
- Inculcate knowledge on maximize the profit and minimize the cost in every place.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Provide basic knowledge on game theory and able to solve practical problems related to it.	K2
CO2	Find the optimum integer solution using Integer programming problem	К3
CO3	Expose the fundamentals of Queueing theory and steady state analysis	К3
CO4	Determine the sequences that minimizes the total elapsed time by sequencing problem	K3
CO5	Discuss the constructing a project network and its importance	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	S	S	S
CO2	S	М	S	S	S	М
CO3	S	S	М	S	М	S
CO4	S	М	S	S	S	S
CO5	S	М	S	М	S	S

S- Strong M-Medium L-Low

(Sections: 14.3, 14.8 – 14.9, 14.12 – 14.13, 15)

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS 90%

TEACHING METHODOLOGY:

1. Class room teaching

(CPM) – PERT computations.

- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

UNIT V: NETWORK SCHEDULING BY CPM/PERT

UNIT IV: SEQUENCING PROBLEM

Sequencing problem – n jobs through two machines, n jobs through three machines – Graphical Method. (Sections: 5.1 - 5.4)

Network Scheduling by CPM/PERT - Project Network Diagram - Critical Path Method

(Sections: 10.1 - 10.9, Models I and IV)

UNIT II: INTEGER PROGRAMMING

Integer programming – Gomory's all I.P.P method. (Sections: 6.10.1 – 6.10.6)

UNIT I: GAME THEORY

Game theory - Two persons zero sum game - The Maximin and Minimax principle - Saddle points-Games without saddle points, mixed strategies - Dominance property. (Sections: 9.1 - 9.20)

UNIT III: QUEUING THEORY 15 Hours Queuing Theory – Basic concepts – Steady state analysis of M/M/1 system with finite and infinite capacities.

15 Hours

15 Hours

15 Hours

15 Hours

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Gupta P.K. and	Problems in	S.Chand&	2000
	Hira D.S	Operations	Co.,Delhi	
		Research		

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	J.K.Sharma	Operations	Macmillan, Delhi	2001
		Research :		
		Theory and		
		Applications		
2.	KantiSwaroop,	Problems in	Sultan Chand & Sons	2002
	Gupta P.K.	Operations		
	Manmohan,	Research		
3.	Ravindran A.,	Operations	John Wiley & Sons,	1987
	Philips D.T.	Research	New York.	
	and Solberg J.J.			
4.	Taha H.A	Operations	Macmillan Publishing	2003
		Research	Company, New York	
5.	Vittal P.R	Operations	MarghamPublications,	2003
		Research	Chennai	
6.	Venkatesan S.J	Operations	J.S Publishers,	-
		Research	Cheyyar	

WEB RESOURCES

- 1. https://notendur.hi.is/kth93/3.20.pdf
- 2. https://shodhganga.inflibnet.ac.in/bitstream/10603/30974/4/06_chapter%204.pdf
- 3. https://ocw.ehu.eus/pluginfile.php/8171/mod_resource/content/1/6_Integer_Slides.pdf
- 4. https://thalis.math.upatras.gr/~tsantas/DownLoadFiles/Hillier&Lieberman_7thedition_Chapter10.pdf

SYLLABUS DESIGNER

Mrs. C. Revathi, Assistant Professor of Mathematics