ELECTIVE I - RECOMBINANT DNA TECHNOLOGY

Semester	Subject	Categor	Lecture		Theory		Practical		Credi
	code	y	Tota 1 hrs	Hrs/ wee k	Tota 1 hrs	Hrs / wee k	Tot al hrs	Hrs/ wee k	t
V		Elective	45	3	45	3	_	-	3

COURSE OBJECTIVES

To enable the students to understand the basics of Recombinant DNA Technology

COURSE OUTCOMES

On the successful completion of the course, students will be able to know the basics of Recombinant DNA Technology

СО	CO Statement	Knowledge Level		
Number		(K1-K4)		
CO1	To understand tools of r-DNA technology	K2		
CO2	To understand and get familiarized about Cloning vectors	K2		
CO3	To understand about Cloning Strategies	K2		
CO4	To understand about Molecular Techniques in R-DNA Technology	K2		
CO5	To understand about the Applications of genetic engineering	K2		

MAPPING WITH PROGRAMME OUTCOMES:

cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	M	M	M	M
CO2	M	M	M	S	M	M
CO3	M	M	M	M	M	M
CO4	M	M	M	M	M	M
CO5	M	M	M	S	S	S

S- Strong; M- Medium; L- Low

UNIT-I: Tools for r-DNA technology

8 hrs

DNA modifying enzymes and their uses in recombinant DNA technology: Restriction endonucleases, DNA ligases, Reverse Transcriptase, Alkaline Phosphatase, Taq polymerase.

UNIT-II: Cloning Vectors

9 hrs

Bacterial vectors for Prokaryotes – pBR322, pUC, Bacteriophage Vectors - Lambda (insertion & replacement vectors) and M13, Cosmids, Artificial chromosomes (YAC), Vectors for plant and animal cells (Ti plasmids and Viral vector - SV 40). Specialized vectors – Shuttle vectors.

UNIT-III: Cloning Strategies

10 hrs

Steps involved in Gene cloning, Construction of genomic DNA libraries (shotgun cloning) and cDNA libraries. Screening of recombinants - Antibiotic resistance, lac Z, α complementation (Blue-white selection). Colony Hybridization and Immunological screening for expressed genes.

UNIT-IV: Molecular Techniques

8 hrs

Techniques: PCR - Principle, types and applications. Nucleic acid and protein hybridization techniques - Southern blotting, Western blotting and Northern blotting.

UNIT-V: Applications of genetic engineering

10 hrs

Biotechnological applications of r DNA technology: Therapeutic products for use in human health care- insulin, Hepatitis B vaccine using rDNA technology- Gene therapy for ADA and cystic fibrosis. Forensic applications - DNA Profiling.

DISTRIBUTION OF MARKS: Theory - 100% and Problems – Nil

TEACHING METHODOLOGY:

- ***** Lectures
- **❖** Power point presentation
- **♦** Charts
- ❖ Models
- ❖ Group discussion
- Group assignments

TEXT BOOKS:

Sl no:	Book Name	Author Publisher		Year of Publicati
				on
01	Molecular Biology	Freifedler	Narosa Publishing	2004
			House New Delhi	
02	Gene cloning	Brown T.A.	Wiley & Sons	2010
03	Introduction to	Old, R.S and	Blackwell Scientific	2001
	Genetic Engineering	Primrose	Publications,	

REFERENCE BOOKS:

S1	Book Name	Author	Publisher	Year of
no				Publicati
:				on
01	Gene targeting protocols	Eric B Kmiee	Human Press Inc	2013
02	Recombinant DNA	Watson JD,	2 nd Ed. Scientific	1992
	Technology	Gilman	American Books.	
		M,Witkoski J,		
		Zoller. M		
03	Recombinant DNA	Keya Chaudhuri	The Energy and	2015
	Technology		Resources	
			Institute, TERI	
04	Principles of Gene	Old, R.S and	Blackwell Scientific	2006
	Manipulation	Primrose	Publications,	

WEB SOURCES:

www.nature.com

www,sciencedirect,com

www.springer.com

www.nptel.com

SYLLABUS DESIGNER:

- 1. Dr.J.Hemapriya, Assistant Professor
- 2. Dr. A.Vidhya HOD & Assistant Professor