NANOBIOTECHNOLOGY AND APPLICATIONS

Semester	Subject Category		Lecture		Theory		Practical	Credits
	Code		Hrs/ Week	Total Hours/ Semester	Hrs/ Week	Total Hours/ Semester		
III		Elective- III	3	45	3	45	Nil	3

COURSE OBJECTIVES

- To understand the overview nanobiotechnology
- To understand the role of nanotechnology in biology
- To learn the different methodology for nanoparticles synthesis
- To learn the various instruments for characterization of nanoparticles
- To understand the impact of nanoparticles on the environment.

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

CO	CO Statement	Knowledge Level
Number		(K1-K4)
CO1	To understand the outline of nanobiotechnology.	K2
CO2	To learn about the role of nanotechnology in biology .	K1
CO3	To learn about the various methodologies for synthesis of nanomaterials.	K1
CO4	To acquire knowledge on the working principle of different instruments for nanomaterials characterization.	K3&K4
CO5	To understand the impacts of nanoparticles on human health and environment	K2

Knowledge Level: K1-Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	M
CO2	M	S	S	M	S
CO3	S	M	S	M	S
CO4	M	S	M	S	M
CO5	S	M	M	S	S

S- Strong; M – Medium; L- Low

DISTRIBUTION OF MARKS: THEORY 100%

UNIT -I 9 Hours

INTRODUCTION TO NANOTECHNOLOGY`

Introduction - Importance of nanoscience and nanotechnology in biomedical applications. Interaction between biomolecules and nanoparticles. Applications of nanotechnology in biotechnology, killing cancer cells, providing oxygen and artificial mitochondria. Nano biosensors.

UNIT -II 9 Hours

NANOMATERIALS FOR BIOLOGY

Carbon based nanomaterials - carbon nanotubes for biomedical applications, SWCNT and MWCNT. Magnetic nanoparticles - Quantum dots - Quantum dot biomolecular tags. Conjugation of quantum dots with biomolecules. Si nanowires. Nano biomaterials: Biocompatibility; Antibacterial activity; DNA and Peptide based nanomaterials; Polymer nanostructures.

UNIT -III 9 Hours

SYNTHESIS OF NANOPARTICALS

Top-Down approach, Bottom-Up approach, PVD, CVD, Micro emulsion method, Sol-gel processing. Biological synthesis of nanoparticles - Use of bacteria, fungi, Actinomycetes for nanoparticle synthesis, Role of plants in nanoparticle synthesis.

UNIT- IV 9 Hours

CHARACTERIZATION OF NANOBIOMATERIALS

Basic principles, operations and applications of UV-Visible spectroscopy, FI-IR spectroscopy, SEM, TEM, Fluorescence spectroscopy, Fluorescent resonance energy transfer (FRET), AFM of DNA, STM of DNA and Co focal microscopy.

UNIT- V 9 Hours

ENVIRONMENTAL NANOTECHNOLOGY

Nanotoxicology, Environmental and Health impacts of nanomaterials, Waste remediation, Nanoporous polymers and their application in water purification, Energy conversion. Photocatalytic fluid purification, Current status of nanobiotechnology, Future perspectives of nanobiology and safety measures of nanomaterials.

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATI ON
1.	A.K. Bandyopadhyay	Nanomaterials	New Age International Publishers	2007
2.	Challa Kumar	Tissue, cell and organ engineering	Wiley-VCH, Verlag	2006
3.	C.N.R. Rao, A. Muller, A.K. Chutham	The Chemistry of Nanoparticles	Wiley-VCH, Verlag	2006
4.	Robert A. Freitas	Nanomedicine, Vol. IIA	Landes Bioscience, Georgetown.	2003
5.	Hari Singh Nalwa	Handbook of Nanostructure Biomaterials and Their Applications in Nanobiotechnology	American Scientific Publishers	2006
6.	Bharat Bhusha	Handbook of Nanotechnology	Springer	2007
7.	Dr. Christof M. Niemeyer Dr. Chad A. Mirkin	Nanobiotechnology : Concepts, Applications and Perspectives	Elsevier publication	2004
8.	C. Shad Thaxton Chad A. Mirkin Dr. Christof M. Niemeyer	DNA–Gold- Nanoparticle Conjugates	Elsevier publication	2004

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	C.M.Niemeyer,	Nanobiotechnology	WILEY-VCH Verlag	2004
	C.A. Mirkin		GmbH & Co. KG	
			Weinheim.	
2.	Pulickel M.	Nanocomposite	WILEY-VCH Verlag	2004
	Ajayan, Linda S.	Science &	GmbH & Co. KG A,	
	Schadler, Paul V.	Technology	Weinheim	
	Braun			
3.	C. P. Poole and F.	Introduction to	Wiley	2006
	J. Owens	Nanotechnology	-	
4.	M. Ratner and D.	Nanotechnology: A	Prentice Hall.	2002
	Ratner	Gentle Introduction		
		to the Next Big Idea		

5.	L. E. Foster	Nanotechnology -	Pearson Education.	2006
		Science,		
		Innovation, and		
		Opportunity		

WEB SOURCES:

www.livescience.com

www.sciencemag.com

www.treehugger.com

www.nature.com

TEACHING METHODOLOGY

- Class room teaching
- Assignments ,Seminars and Models
- Group Discussions
- Home test
- PPT Presentations
- Board and chalk
- Demonstration from the Video slides, Animated videos and interactive software.

SYLLABUS DESIGNERS

- Dr D.Sasikala, Assistant Professor & HOD
- Dr.V.Kiruthiga, Assistant Professor
- Dr V.Rekha, Assistant Professor
- DrA. Vinodhini, Assistant Professor
- Dr.G.Vidhya, Assistant Professor
- Dr. S. Vijayakumari, Assistant Professor