GENERAL CHEMISTRY-I

Se	mester	Subject	Category	Lec	ture	The	eory	Pract	ical	Credits
		Code		ho	urs	ho	urs	hou	ırs	
				Per	Per	Per	Per	Per	Per	
				week	sem.	week	sem.	week	sem.	
	II	21CCH2A	Core-II	5	75	5	75	-	-	5

COURSE OBJECTIVES:

- To gain knowledge on preparation, properties and reactions various hydrocarbons.
- To learn the theory behind the volumetric analysis.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	To learn about the chemistry of alkanes and alkenes	K2
CO2	To learn about the chemistry of alkynes and cycloalkanes	K2
CO3	To understand various types of chemical bonding	К3
CO4	To gain knowledge about s-block elements, compounds	К3
	and its complexes	
CO5	To learn about thermochemistry and the behavior of ideal	К3
	gases and can solve the problems regarding molecular	
	velocities.	

^{*}CO – course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	M	M	M	M	S
CO2	S	M	M	M	M	S
CO3	S	M	M	S	S	S
CO4	S	M	M	M	M	S
CO5	S	M	M	S	S	S

(S-Strong; M-Medium; L-Low)

UNIT – I: Alkanes and alkenes

15 Hours

- 1.1 Alkanes Methods of preparation of alkanes Wurtz method, Sabatier-Senderens reduction, Kolbe's electrolytic method and reduction of alkyl halides physical properties and chemical properties of alkanes isomerisation, aromatization, oxidation with KMnO₄ cracking chlorination mechanism of free radical substitution reaction.
- 1.2 Alkenes: Preparation from alcohol, haloalkane, dihaloalkanes and alkynes reactions of alkenes mechanisms involved in addition of hydrogen, halogen, hydrogen halide, hypohalous acid, water, hydroboration, hydroxylation, ozonolysis, isomerisation and epoxidation Markonikkof's rule peroxide effect allylic substitution by NBS, oxidation by KMnO₄ and polymerization Dienes classification-conjugated, isolated and cumulated dienes stability of dienes synthesis of dienes –- 1,3- butadiene, isoprene and chloroprene reactions 1,2 and 1,4 addition reactions of H₂ and HX, polymerization and Diels-Alder reaction.

UNIT-II: Alkynes and Cycloalkanes

15 Hours

- 2.1 Akynes: preparation reactions addition of hydrogen, halogen, hydrogen halide, water, HCN, CH₃COOH, hydroboration, alcohols and carboxylic acids, polymerization, ozonolysis, oxidation with chromic acid and alkaline KMnO₄ acidity of terminal alkynes formation of acetylides.
- 2.2 Cycloalkanes: Preparation Wurtz reaction, Dieckmann's condensation and reduction of aromatic hydrocarbons reactions cycloaddition, dehalogenation, pyrolysis of calcium salt of dicarboxylic acid substitution and ring opening reactions stability of alkanes, alkenes and cycloalkanes Baeyer's strain theory theory of strainless rings.

UNIT - III: Chemical bonding

15 Hours

3.1 Chemical bond – definition – types (ionic, covalent and metallic) – definition - Ionic bond – characteristic of ionic bond – formation of sodium chloride ,calcium oxide and magnesium chloride molecules – factors favoring the ionic compounds – ionization potential – electron affinity – electronegativity – Lattice energy – Born-Haber Cycle – Pauling and Mulliken's scales of electronegativity – Polarizing power and Polarizability – Partial ionic character from electronegativity – Transition from ionic to covalent character and vice versa – Covalent character of ionic compounds – Fajan's rules – Covalent bond.

3.2 Hydrogen bonding – Its nature, types and effect on properties – Intermolecular forces – London forces and Van der Waals forces – ion-dipole-dipole interactions – VSEPR Theory – Principles and hybridization- Shapes of simple inorganic molecules (BeCl₂, BF₃, SiCl₄, PCl₅, SF₆, H₂O, NH₃) – MO Theory –Bonding and anti-bonding orbitals – Applications of MO theory - H₂, He, N₂, O₂, HF and CO molecules – bond order.

UNIT – IV: s - block elements

15 Hours

- 4.1 Position of hydrogen in the periodic table General characteristics of s- block elements Compounds of s-block metals oxides, hydroxides, peroxides, superoxide preparation and properties oxo salts carbonates bicarbonates nitrates halides Anomalous behavior of Lithium and beryllium.
- 4.2 Extraction of beryllium physical and chemical properties of beryllium Uses Extraction of Magnesium physical and chemical properties Uses Complexes of s-block metals complexes with crown ethers Organometallic compounds of Lithium and Beryllium.

Unit – V: Thermochemistry and Gaseous State

15 Hours

- 5.1 Thermochemistry: Heat of reaction exothermic and endothermic reactions –calculation of ΔH from ΔE and vice versa Thermochemical equations bond dissociation energy calculation from thermochemical data variation of heat of a reaction with temperature Kirchoff's equation and its significance.
- 5.2 Gaseous state Kinetic gas equation derivation Gas laws from the kinetic gas equation Different kinds of velocities mean, rms and most probable velocities Calculation of molecular velocities Maxwell's distribution of molecular velocities (no derivation) equipartition of energy Real gases Virial equation of state Boyle temperature (No derivation) Joule's law Joule-Thomson effect Joule-Thomson coefficient and its derivation inversion temperature and its significance (No derivation).

TEXT BOOKS

S. No.	Authors	Title	Publis hers	Year of publication
1.	P. L. Soni	Text Book of Organic	Sultan Chand	1986
		Chemistry		
2.	K. S. Tewari, N. K. Vishnoi,	A Text Book of Organic	Vikas	2011
	and S. N. Mehrotra	Chemistry	Publishing	

						House, 3 rd edition	
3.	B. R. Puri, Sharma	and	Principles	of	Physical	Vishnoi	2013
	Madan and	S.	chemistry			Publicating	
	Pathanaia		-			Co.,	

REFERENCE BOOKS

S.	Authors	Title	Publis hers	Year of
No.				publication
1.	B. R. Puri, L. R. Sharma and	Principles of Inorganic	Milestone	2013
	K. C. Kallia	chemistry	Publications	
2.	W. U. Malik, G. D. Tuli and	Selected topics in Inorganic	S. Chand	2008
	R. D. Madan	chemistry	Publications	
4.	Bahl and Arun Bahl	Advanced Organic	S. Chand and	2010
		Chemistry	company Ltd	
5.	M. K. Jain and S. C. Sharma	Modern Organic chemistry	Vishnoi	2017
			Publications	
6.	R. T. Morrison and R. N.	Organic Chemistry	Prentice- Hall	2008
	Boyd		of India	
7.	P. L. Soni	Text Book of Physical	Sultan Chand	1992
		Chemistry	and Sons	
8.	R. D. Madan	Modern Inorganic	S. Chand	2014
		Chemistry	Publications,	
			Reprint	

TEACHING METHODOLOGY:

- Power Point Presentations
- Assignments
- Animated videos
- Chalk and Board