GENERAL CHEMISTRY-III

Semester	Subject Code	Category	Lec ho	ture	_	eory urs	Pract hou		Credits
	Couc		Per week	Per sem.	Per week	Per sem.	Per week	Per sem.	
IV	21CCH4A	Core-IV	4	60	4	60	-	-	4

COURSE OBJECTIVES:

The students will be able to

- Gain knowledge about the basic concepts regarding Nitrogen, Oxygen, Halogen families and Noble gases.
- Understand about Carbonyl compounds, Carboxylic Acids, Thermodynamics of solutions and Colligative properties.

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Learn about the p-block elements, nitrogen and oxygen families.	K4
CO2	Get a clear knowledge about halogen family, noble gases and	K4
	their applications.	
CO3	Know about the important reactions of carbonyl compounds and	К3
	carboxylic acids.	
CO4	Understand about the concepts and importance of solutions	K3
CO5	Gain knowledge about partially miscible liquids, colligative	K4
	properties and their applications.	

^{*}CO - Course Outcomes

 $Knowledge\ Level:\ K1-Remember;\ K2-Understand;\ K3-Apply;\ K4-Analyze.$

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	M	M	S	S
CO2	S	S	M	M	S	S
CO3	S	S	S	S	S	S
CO4	S	S	M	M	S	S
CO5	S	S	S	M	S	S

(S - Strong; M - Medium; L - Low)

- 1.1 General characteristics of elements of V A Group with reference to electronic configuration, atomic and ionic radii, ionization energy, electron affinity, electronegativity, oxidation states, inert pair effect, catenation, halides, oxides, hydrides, oxy acids Preparation, properties and uses of Hydrazine, Hydroxylamine and Hydrazoic acid Allotropes of Phosphorus and their structures Chemistry of PH₃, PCl₃, PCl₅, POCl₃– oxides and oxyacids of Nitrogen and phosphorous.
- 1.2 General characteristics of elements of VI A group with reference to electronic configuration, atomic and ionic radii, ionization energy, electron affinity, electronegativity, oxidation states, inert pair effect, catenation, anomalous behavior of oxygen Structure and uses of ozone Sulphur: Allotropes of sulphur Rhombic and Monoclinic sulphur Structure of sulphur and action of heat, properties, structure and uses of SO₂, SO₃, H₂SO₄, hyposulphurous acid and pyrosulphuric acid Peracids of sulphur Preparation, properties, structure and uses.

UNIT – II: Halogens and Noble gases

12 Hours

- 2.1 General characteristics of halogens with reference of electronegativity, electron affinity, oxidation states, and oxidising power Anomalous behavior of fluorine Hydrides, oxides and oxyacids of halogens Interhalogen compounds Classification, structures and uses of interhalogen compounds ICl, BrF₃, ClF₅ and IF₇.
- 2.2 Inert gases Position of noble gases in the periodic table General characteristics structure and shape of xenon compounds XeF_2 , XeF_4 , XeF_6 , $XeOF_2$, $XeOF_4$, XeO_3 Clathrates of Xenon Uses of noble gases.

UNIT – III: Carbonyl Compounds and Carboxylic Acids

12 Hours

- 3.1 Common methods of synthesis: Synthesis of aldehydes from acid chlorides, Stephen's reduction Gattermann-Kosch and Rosenmund's reaction Synthesis of ketones from nitriles, Friedel-Crafts and Hoesch reactions Reactions of nucleophilic additions to carbonyl group Addition of HCN, alcohols, sodium bisulphite, Grignard reagents Aldol, Perkin, Benzoin and Knoevenegal condensation reactions Wittig reaction, Mannich reaction, Reformatsky reaction and Cannizzaro reaction.
- 3.2 Preparation of carboxylic acids from alcohols, cyanides and Grignard reagents Acidity of carboxylic acids Effect of substituents on acid strength Reactions of carboxylic acids Hell-Volhard-Zelinsky reaction Esterification, acylation, dehydration and

reduction – Dicarboxylic acids – General method of Preparation from acetoacetic ester – Action of heat on dicarboxylic acid – Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and phthalic acid.

UNIT – IV: Thermodynamics of Solutions

12 Hours

- 4.1 Solutions of gases in liquids Henry's law Limitations Solution of liquids in liquids Raoult's law Determination of molecular mass from lowering of vapour pressure Vapour pressure of ideal solutions Activity of a component in an ideal solution Thermodynamics of ideal solutions Free energy change, Volume change, Enthalpy change and Entropy change of mixing of ideal solutions.
- 4.2 Vapour pressure of real and non-ideal solutions Vapour pressure-composition and Boiling point-composition curves of completely miscible binary solutions Fractional distillation of binary liquid solutions Azeotropic mixtures.

UNIT – V: Solutions and Colligative Properties

12 Hours

- 5.1 Solubility of partially miscible liquids CST Phenol-water system, triethlyamine-water system and nicotine-water system Effect of impurities on CST Nernst Distribution law Thermodynamic derivation and applications.
- 5.2 Colligative properties of dilute solutions Thermodynamic derivation of elevation in boiling point and depression in freezing point Van't Hoff factor Abnormal molar mass Association and dissociation Osmosis and osmotic pressure Definition Relation between osmotic pressure and Lowering of vapour pressure of an ideal solution.

TEXT BOOKS:

S.	Authors	Title	Publis hers	Year of
No.				publication
1.	P. L. Soni and H. M. Chawla	Text Book of	Sultan Chand and	1986
		Organic Chemistry	Sons	
2.	K. S. Tewari, N. K. Vishnoi,	A Text Book of		2011
	and S. N. Mehrotra	Organic Chemistry	House, 3 rd edition	
3.	B. R. Puri, L. R. Sharma and	Principles of	Vishal Publishing Co.	2013
	Madan S. Pathania	Physical Chemistry		

REFERENCE BOOKS:

S.	Authors	Title	Publis hers	Year of

No.				publication
1.	B. R. Puri, L. R.	Principles of Inorganic	Milestone Publications	2013
	Sharma and K. C.	Chemistry		
	Kalia			
2.	W. U. Malik, G. D.	Selected Topics in Inorganic	S. Chand Publications	2008
	Tuli and R. D.	Chemistry		
	Madan			
3.	Arun Bahl and B. S.	Advanced Organic	S. Chand and Company	2010
	Bahl	Chemistry	Ltd.	
4.	M. K. Jain and S. C.	Modern Organic Chemistry	Vishal Publishing Co.	2017
	Sharma			
5.	R. T. Morrison and	Organic Chemistry	Prentice- Hall of India	2008
	R. N. Boyd			
6.	P. L. Soni	Text Book of Physical	Sultan Chand and Sons	1992
		Chemistry		
7.	R. D. Madan	Modern Inorganic Chemistry	S. Chand Publications	2014
8.	J.E. Huheey	Inorganic Chemistry –	Harper Collins, New	1993
		Principles, Structure and	York.	
		Reactivity		
9.	Arun Bahl, B. S.	Essentials of Physical	S. Chand and company	2012
	Bahl and G. D. Tuli	Chemistry	Pvt. Ltd.	

TEACHING METHODOLOGY:

- Power Point Presentations
- Assignments
- Animated videos
- Chalk and Board