GENERAL CHEMISTRY-II

Semester	Subject Code	Category	Lec ho	ture urs	_	eory urs	Pract hou		Credits
			Per week	Per sem.	Per week	Per sem.	Per week	Per sem.	
III	21CCH3A	Core-III	4	60	4	60	-	-	4

COURSE OBJECTIVES:

The students will be able to

- Gain knowledge about the principles of inorganic qualitative analyses and the p-Block elements such as Boron and Carbon family
- Understand the importance of Alkyl halides, Aromatic compounds, Alcohols, Phenols and Nitrogen containing compounds.
- Learn the Second law of thermodynamics, the concept of Entropy, concept of Gibbs free energy and their applications, Colloids and Thermochemistry.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Understand about the principles behind inorganic qualitative	K4
	analyses and p- Block elements such as boron and carbon family.	
CO2	Know about alkyl halides, aliphatic nucleophilic substitution,	К3
	elimination reactions and aromatic electrophilic substitution	
	reactions.	
CO3	Learn about alcohols, phenols and nitrogen containing	К3
	compounds.	
CO4	Acquire knowledge about second law of thermodynamics, the	K2
	concept of entropy, concept of Gibbs free energy and their	
	applications and third law of thermodynamics.	
CO5	Know about the applications of colloids and thermochemistry.	K4

^{*}CO - Course Outcomes

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	M	M	S	S
CO2	S	S	S	M	S	S
CO3	S	S	S	M	S	S
CO4	S	S	S	M	S	S
CO5	S	S	S	S	S	S

(S – Strong; M – Medium; L – Low)

- 1.1 Principles of inorganic analysis Reactions involved in the separation and identification of cations and anions in the qualitative inorganic analysis Principles of equilibria Common ion effect Solubility product and their applications in qualitative analysis General characteristics of elements of Group III A with reference to occurrence, electronic configuration, atomic and ionic radii, ionization energy, electron affinity, electronegativity, oxidation states, inert pair effect, halides, oxides, hydrides Lewis acid base concept of boron Anomalous behaviour of Boron Diagonal relationship between Boron and Silicon Preparation, properties and structure of Diborane and Borazole.
- 1.2 General characteristics of elements of Group IV A with reference to occurrence, electronic configuration, catenation, metallic and non-metallic character, atomic and ionic radii, ionization energy, electron affinity, electronegativity, oxidation states, inert pair effect, halides, hydrides Allotropic forms of carbon Crystalline and amorphous forms Structure of graphite, diamond and fullerenes.

UNIT – II: Alkyl halides and Aromatic Electrophilic Substitution 12 Hours

- Classification of alkyl halides Methods of formation of haloalkanes from alcohols, from alkenes and Hunsdiecker reaction Nucleophilic substitution reactions mechanisms and stereochemistry of nucleophilic substitution reactions S_N1 , S_N2 and S_Ni reactions with energy profile diagrams Elimination reactions: Bimolecular elimination reaction (E2) –Unimolecular elimination reaction (E1) Mechanisms of E1 and E2 Reactions Dehydrohalogenation Hofmann and Saytzeff's rules.
- 2.2 Aromaticity Definition Huckel's rule Aromatic electrophilic substitution Mechanism of nitration, halogenation, sulphonation and Friedel-Crafts reaction Activating and deactivating substituents Orientation in monosubstituted benzenes.

UNIT – III: Alcohols, Phenols and Nitrogen Containing Compounds 12 Hours

3.1 Preparation of alcohols through hydration, oxymercuration and Grignard reaction – Differences between primary, secondary and tertiary alcohols – General Reactions of alcohols – Oxidation, dehydration, conversion to alkyl halides – Preparation of phenol from benzene – Comparison of acidity of phenol with alcohols – Relative acid strength of

- substituted phenols Reactions of phenols Esterification, Oxidation, Kolbe's reaction, Reimer-Tiemann and Gattermann reaction.
- 3.2 Nitroalkanes Preparation of nitroalkanes from alkyl halide and haloacids General chemical characteristics Amines Preparation: Gabriel phthalimide reaction and Hofmann reaction Differences between primary, secondary and tertiary amines Reactions: Mannich, Libermann's nitroso reaction and carbylamine reaction.

UNIT - IV: Thermodynamics

12 Hours

- 4.1 Second law of thermodynamics Need for second law of thermodynamics Statements of Second law of thermodynamics Carnot cycle Carnot theorem Efficiency of heat engine Concept of entropy Entropy change in a cyclic process Entropy change in isothermal expansion of ideal gas Entropy change in reversible and irreversible process Entropy change accompanying by change of phase Calculation of entropy change of an ideal gas with changes in pressure, volume and temperature Entropy of mixing of ideal gases Physical significance of entropy.
- 4.2 Gibbs free energy Work function Variation of free energy change with temperature and pressure Maxwell's relationship Criteria for spontaneity Gibbs-Helmholtz equation Partial molar properties Clapeyron-Clausius equation and its applications Third law of thermodynamics Nernst heat theorem Statement of third law of thermodynamics Evaluation of absolute entropy from heat capacity measurements Exceptions to III law of thermodynamics.

UNIT – V: Colloids and Thermochemistry

12 Hours

- Colloids Dispersion medium and dispersed phase Classification of Colloids Characteristics of True solutions, Colloidal solutions and Suspensions Optical properties Tyndall effect Kinetic properties Brownian motion Electrical properties Electrophoresis and Electro-osmosis Theory of electrical double layers Zeta potential Applications of colloids.
- 5.2 Thermochemistry Heat of formation, Heat of combustion, Heat of solution, Heat of neutralization, Heat of fusion, Heat of vaporisation, Heat of sublimation, Heat of transition Hess's law of transition Determination of Heat of transition using Hess's law of constant heat summation Problems.

TEXT BOOKS:

S.	Authors	Title	Publis hers	Year of
No.				publication
1.	P. L. Soni and H. M.	Text Book of Organic	Sultan Chand and	1986
	Chawla	Chemistry	Sons	
2.	K. S. Tewari, N. K.	A Textbook of Organic	Vikas Publishing	2011
	Vishnoi and S. N.	Chemistry	House, 3 rd edition	
	Mehrotra			
3.	B. R. Puri, L. R.	Principles of Physical	Vishal Publication	2013
	Sharma and Madan	Chemistry	Co.	
	S. Pathania			

REFERENCE BOOKS:

S.	Authors	Title	Publis hers	Year of
No.				publication
1.	B. R. Puri, L. R.	Principles of Inorganic	Milestone Publications	2013
	Sharma and K. C.	Chemistry		
	Kallia			
2.	W. U. Malik, G. D.	Selected Topics in Inorganic	S. Chand Publications	2008
	Tuli and R. D.	Chemistry		
	Madan			
3.	Arun Bahl and B.S.	Advanced Organic	S. Chand and company	2010
	Bahl	Chemistry	Ltd.	
4.	M. K. Jain and S. C.	Modern Organic Chemistry	Vishal Publishing Co.	2017
	Sharma			
5.	R. T. Morrison and	Organic Chemistry	Prentice- Hall of India	2008
	R. N. Boyd			
6.	P. L. Soni	Text Book of Physical	Sultan Chand and Sons	1992
		Chemistry		
7.	R. D. Madan	Modern Inorganic Chemistry	S. Chand Publications,	2014
			Reprint	
8.	J. E. Huheey	Inorganic Chemistry –	Harper Collins, New	1993
		Principles, Structure and	York, IV Edition	
		Reactivity		
9.	Arun Bahl, B. S.	Essentials of Physical	S. Chand and Company	2012
	Bahl and G. D. Tuli	Chemistry	Pvt. Ltd.	

TEACHING METHODOLOGY:

- Power Point Presentations
- Assignments
- Animated videos
- Chalk and Board