D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 SEMESTER EXAMINATIONS										
Reg.No :										

JUNE – 2022 CALCULUS

21CMA2A

Max. Marks: 75

Time: 3 Hours

SECTION - A (10 x 2 = 20)

Answer ALL the questions.

1. If $y = a\cos 5x + b\sin 5x$ show that $\frac{d^2y}{dx^2} + 25y = 0$.

2. Find the n^{th} derivative of sin(ax + b).

- 3. Prove that the radius of curvature at the point (0, 1) on the curve $y = e^x$ is $2\sqrt{2}$.
- 4. Find the p r equation of $r = a\theta$.

5. Mention the two properties of evolutes.

- 6. Find the asymptotes of the curve (x y)(x + y)(x + 3y 7) (2x 3y + 1) = 0.
- 7. Evaluate $\int_0^{\frac{\pi}{2}} \cos^7 x dx$.
- 8. If $x = u^2 v^2$, y = 2uv find $\frac{\partial(x,y)}{\partial(u,v)}$.
- 9. Evaluate $\int_0^{\frac{\pi}{2}} \int_0^a dr \, d\theta$.
- 10. Evaluate $\int_0^2 \int_1^3 \int_1^2 xz dz dy dx$.

SECTION - **B** (5 x 5 = 25)

Answer ALL the questions.

11. (a) If
$$y = (tan^{-1}x)^2$$
 show that $(1 + x^2)^2 y_2 + 2x(1 + x^2)y_1 = 0$.

(Or)

- (b) Find the n^{th} derivative of $e^{3x} \sin x \sin 2x \sin 3x$.
- 12. (a) Prove that the radius of curvature at the point $(a\cos^3\theta, a\sin^3\theta)$ on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is $3a\sin\theta\cos\theta$.

(Or)

- (b) Show that the radius of curvature at any point on the equiangular spiral $r = ae^{\theta \cot \alpha}$ is $r = \csc \alpha$.
- 13. (a) Find the equation of the evolute of the curve $x = a(\cos\theta + \theta \sin\theta)$, $y = a(\sin\theta \theta \cos\theta)$.

(Or)

- (b) Find all the asymptotes of $(x y)^2(x^2 + y^2) 10(x y)x^2 + 12y^2 + 2x + y = 0$.
- 14. (a) Derive the reduction formula for $\int_0^{\frac{\pi}{2}} \sin^n x dx$.

(Or)
(b) Express
$$\int_0^1 x^m (1-x^n)^p dx$$
 in terms of gamma function and evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$.
15. (a) Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dydx}{\sqrt{1+x^2+y^2}}$.
(Or)

(b) Evaluate $\iint xydxdy$ over the region in the positive quadrant for which x + y = 1.

SECTION - **C** (3 x 10 = 30)

Answer any THREE of the following questions.

- 16. Find the minimum of $a^3x^2 + b^3y^2 + c^3z^2$ with the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.
- 17. Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin\theta)$,

 $y = a(1 - \cos\theta)$ is $4a\cos\frac{\theta}{2}$.

- 18. Find the asymptotes of the curve $y^3 2y^2x yx^2 + 2x^3 + x^2 6xy + 5y^2 2y + 2x + 1 = 0$.
- 19. Show that $\int_0^1 \frac{dx}{\sqrt[3]{1-x^3}} = \frac{2\pi}{3\sqrt{3}}$.
- 20. Find the volume of the region bounded by the surfaces $y^2 = 4ax$, $x^2 = 4ay$ and the plane z = 0 and z = 3.

* * * * * *