D.K.M. COLLEGE FOR WOMEN

(AUTONOMOUS), VELLORE-1

DEPARTMENT OF CHEMISTRY

SYLLABUS FOR MASTER DEGREE COURSE IN

CHEMISTRY

WITH EFFECT FROM 2019 - 2020

PROGRAMME EDUCATIONAL OBJECTIVES

The purpose of the postgraduate chemistry program at this institution is

- **PEO1:** To offer students a more quantitative significant foundation in the principles of Chemistry by conducting academic, industrial and scientific research via the academic conferences, workshops and to produce graduating national provisionally qualified personal who are necessary for the service of the community, government plans and programs of development, education and industry
- **PEO2:** To prepare students for their careers as professionals in the field of chemistry, biochemistry and related fields in various industries, colleges and for professional schools including medical, dental, law and business programs by stepping them into the modern laboratory methods and principles using state-of-the-art scientific equipment.

PROGRAM OUTCOMES

After completion of this program, the students will be able

- **PO1:** To understand and apply the concepts of chemical and scientific theories with mastery approach.
- **PO2:** To analyze quantitative and qualitative data, employ critical thinking and scientific inquiry.
- **PO3:** To develop research oriented learning with analytical and integrative problem solving approaches.
- **PO4:** To demonstrate their interpretational skills with understanding the theory background and contemporary chemical instrumentation.
- **PO5:** To get specific placements in Colleges, R & D synthetic division of various chemical industries, allied division and to develop laboratory competence in relating chemical structure to spectroscopic phenomena.
- PO6: To pursue global level research opportunities like Ph.D programme, postdoctoral fellowship, Junior and Senior research fellowship and also the targeted approach of CSIR NET/SET/Competitive examinations.

PG Department of Chemistry with effect from 2019-2020 CBCS PATTERN The course of study and Scheme of Examination

S.	S. Study components		Study components		Ins.	Credit	Title of the paper	Maximum mark		arks
No.	Cour	Course Title Hrs/ Week		CIA	Sem Exam	Total				
				SEME	STER I					
1	Core	Paper I	4	4	Structure and bonding of Inorganic compounds	25	75	100		
2	Core	Paper II	4	4	Substitution reactions and stereochemistry	25	75	100		
3	Core	Paper III	4	4	Chemical kinetics and electrochemistry	25	75	100		
4	Elective	Paper I	3	3	(Choose any one out of three) a.Bioinorganic Chemistry and Separation Techniques b. Drug Design c. Green Chemistry	25	75	100		
5	Core	Practical I	5	0	Organic Chemistry Practical – I	_	_	-		
6	Core	Practical II	5	0	Inorganic Chemistry Practical – I	-	-	-		
7	Core	Practical III	5	0	Physical Chemistry Practical – I	-	-	-		
8	Optional	Self Study Paper	-	2*	Environmental Chemistry for sustainable world	25	75	-		
			30	15				400		
				SEMES	STER II					
9	Core	Paper IV	3	3	Coordination chemistry	25	75	100		
10	Core	Paper V	3	3	Organic Reaction mechanisms and Rearrangements	25	75	100		
11	Core	Paper VI	4	4	Quantum Chemistry and Analytical Techniques	25	75	100		
12	Elective	Paper II	3	3	(Choose any one out of three) a. Modern Synthetic Strategies and Renewable Energy Resources	25	75	100		

					b. Pharmaceutical			
					Chemistry			
					c. Heterocyclic			
					chemistry			
13		Compulsory paper	2	2	Human rights	25	75	100
14	Core	Practical I	5	5	Organic Chemistry Practical – I	40	60	100
15	Core	Practical II	5	5	Inorganic Chemistry Practical – I	40	60	100
16	Core	Practical III	5	5	Physical Chemistry Practical – I	40	60	100
			30	30				800
	* Optio	nal Internship	Training	during s	ummer Vocation with a	n extra	credit:1-3	

	SEMESTER III							
17	Core	Paper VII	4	4	Nuclear Chemistry and Organometallic Chemistry	25	75	100
18	Core	Paper VIII	4	4	Spectroscopy and Applications	25	75	100
19	Core	Paper IX	4	4	Thermodynamics and group theory	25	75	100
20	Elective	Paper III	3	3	(Choose any one out of three) a. Material Chemistry b.Basic Pharmacology c. Industrial Chemistry	25	75	100
21	Core	Practical IV	5	0	Organic Chemistry Practical – II	-	-	-
22	Core	Practical V	5	0	Inorganic Chemistry Practical – II	-	-	-
23	Core	Practical VI	5	0	Physical Chemistry Practical – II	-	-	-
24	Optional	Self Study Paper	-	2*	Online course	-	-	-
			30	15				400
				SEMES	TER IV			
25	Core	Paper X	6	5	Photochemistry, Heterocycles and Natural products	25	75	100
26	Elective	Paper IV	3	3	(Choose any one out of three)	25	75	100

					a. Scientific			
					Research			
					Methodology			
					b.Supramolecular Chemistry c. Nanoscience and Technology			
27		Compulsor y paper	-	2	Comprehensive Viva	-	100	100
28	Core	Practical IV	5	5	Organic Chemistry Practical – II	40	60	100
29	Core	Practical V	5	5	Inorganic Chemistry Practical – II	40	60	100
30	Core	Practical VI	5	5	Physical Chemistry Practical – II	40	60	100
31	Core	Project	6	5	Project with Viva Voce	25	75 D:60; V-15	100
			30	30				700
Total			120	90				2300

Subject	Papers	Credit	Total	Marks	Total
			Credits		Marks
Main Paper	10	7x4	39	100	1000
		$3x^{1}$ $3x^{2}$			
Main	6	5	30	100	600
Practical					
Elective	4	3	12	100	400
Paper					
Compulsory	2	2	4	100	200
Paper					
Project	1	5	5	100	100
Total	23	-	90	-	2300

PG DEPARTMENT OF CHEMISTRY

PAPER-I: STRUCTURE AND BONDING OF INORGANIC COMPOUNDS

Semester	Subject	Category		Instruction Hours					Credits
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Ι		Core	4	60	4	60	0	0	4

COURSE OBJECTIVES

- To provide knowledge of basic and advanced concepts in bonding and enable the students to identify the structure and bonding of simple molecules.
- To provide an understanding of the various types of solid state packing, types of chemical forces, structure of inorganic chain cluster compounds and the bonding in boron compounds.

COURSE OUTCOMES

> On the successful completion of course, students will be able to

CO	CO statement	Knowledge level
Number		
C01	Gain the knowledge on hybridization, structure and	K2 & K3
	bonding in inorganic molecules	
CO2	Gain the knowledge on structure and packing in solids	K2 & K3
CO3	Acquire knowledge about the crystal lattices and the diffraction methods	К3
CO4	Have a better understanding of boron compounds and clusters.	K2 & K4
CO5	Notify different types of inorganic chains and cluster compounds	K3 & K4

*CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	М	S	М
CO2	М	S	М	S	М	М
CO3	М	М	S	S	М	М
CO4	М	М	S	S	М	S
CO5	М	М	М	М	S	S

MAPPING WITH PROGRAM OUTCOMES:

UNIT I: Chemical Bonding

V.B. approach to bonding-Hitler-London, Pauling and Slater refinements, Concept of hybridization and structure of molecules, VSEPR theory shapes of molecules. M.O. approach to covalent bonding – symmetry and overlap of atomic orbitals – symmetry of molecular orbitals – sigma and pi bonding – energy levels in homo and heteronuclear diatomic systems – bond length, bond order and bond energy, Application to small molecules such as BeCl₂, BCl₃ and CCl₄, SF₄, etc, ionic character in a covalent bond - The concept of multicentre bonding. Pseudo halogens: Structure and bonding in ClF₃, BrF₃, BrF₅, IF₅ and IF₇. Oxides and oxyacids of halogens, Bonding in Noble gas compounds – XeCl₂, XeF₄, XeOF₄ and XeF₆.

UNIT II: Chemistry of Solid State I: Structure

Weak Chemical forces: van der Waals forces, Hydrogen bonding – Close packing of atoms and ions HCP and BCC types of packing voids – radius ratio – derivation – its influence on structures – Lattice energy – Born – Lande equation – Kapustinski equation – Madelung constant.

Representative structures of AB and AB_2 types of compounds – rock salt, cesium chloride, wurtzite, zinc blende, rutile, fluorite, antifluorite, cadmium iodide and nickel arsenide – Structure of graphite and diamond – Spinels – normal and inverse types and perovskite structures.

UNIT III: Chemistry of Solid State II: Diffraction Methods 12hours

Band theory of solids – non – stoichiometry- point defects – linear defects – effects due to dislocations-electrical properties of solids – conductor, insulator, semiconductor – intrinsic – impurity semiconductors – optical properties – lasers and phosphors – elementary study of liquid crystals.

Difference between point group and space group – screw axis – glide plane – symmetry elements – relationship between molecular symmetry and crystallographic symmetry – The Concept of reciprocal lattice – X– ray diffraction by single crystal – rotating crystal – powder diffraction. Neutron diffraction: Elementary treatment – comparison with X-ray diffraction – Electron diffraction –Basic principle – Crystal Growth methods: From melt and solution (hydrothermal, Gel methods).

12 hours

12 hours

UNIT IV: Boron Compounds and Clusters

12 hours

Chemistry of boron – Preparation, properties and structure of boranes, higher boranes - types of boranes closo, nido, arachno. $(B_2H_6, B_4H_{10}, B_5H_{11}, B_6H_{10}, B_{10}H_{14})$ linear and cyclic borazines $(B_3N_3H_6)$, boron nitrides (BN)x and borates ions — STYX numbers, Wade's rules .

Carboranes ($C_2B_9H_{11}^{2-}$), Metallocarboranes (1,2- $C_2B_{10}H_{12}$), Metalloboranes (BnHn²⁻) – preparation, properties and Structure – a general study. Metal clusters: Chemistry of low molecularity metal clusters only – Structure of Re₂Cl₈; multiple metal – metal bonds.

UNIT V: Inorganic Chain and Cluster Compounds 12 hours

Types of inorganic polymers – comparison with organic polymers – silanes, higher silanes (Si_2H_6 , Si_4H_{10}) – multiple bonded systems – silicon carbides, siloxanes. P– N compounds, cyclophosphazenes and cyclophosphazanes – S–N compounds – S_4N_4 , $S_4N_4H_4$ and $(SN)_x$.

Isopoly acids – polyvanadates, polymolybdates, polytungstates – heteropolyacids and their salts – structure of silicates - applications of Paulings rule of electrovalence - isomorphous replacements in silicates – ortho, meta and pyrosilicates – one dimensional, two dimensional and three dimensional silicates – silazenes - preparation, properties and structure.

Distribution of Marks: Theory-80% and Problems-20%

S.	Authors	Title	Publishers	Year of
No.				publication
1.	J.E. Huheey	Inorganic Chemistry –	Harper Collins,	1993
		Principles, Structure and	New York, IV	
		Reactivity	Edition	
2.	D. E. Douglas,	Concepts and Models in	3 rd Ed	1994
	D.H. McDaniel	Inorganic Chemistry		
	and J. J. Alexander			
3.	M. C. Day, J.	Theoretical Inorganic	2 nd Ed, East West	1985
	Selbin	Chemistry	Press	
4.	L. Pauling	The Nature of the	3 rd Ed., Cornell	1960
		Chemical Bond	University Press	
5.	F.A. Cotton and G.	Advanced Inorganic	John Wiley and	1988
	Wilkinson	Chemistry – A	Sons, V Edition	
		Comprehensive Text		
6.	D.F. Shriver, P.W.	Inorganic Chemistry	3 rd Ed	1999
	Atkins			
7.	A.G. Sharpe	Inorganic Chemistry	Pearson Education	2008
	-			
8.	N. H. Ray	Inorganic Polymers	Academic Press	1978
9.	A. R. West	Basic Solid State	John Wiley	1991

TEXT	BOOKS	
	DOOLO	

		Chemistry			
10.	E. L. Mutteri	Polyhedral Boranes	Academic NY	Press,	1975

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1.	S.F.A. Kettle	Coordination Chemistry	EIBS	1973
2.	K. Burger	Coordination Chemistry	Burter Worthy	1973
3.	K.F. Purcell and	Inorganic Chemistry	WB Saunders	1977
	J.C. Kotz		Co., USA	

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semeste	Subjec	Categor		Instruction Hours				Credit	
r	t Code	У	Lecture		Theory			Practica	S
					1				
			Per	Per	Per	Per	Per	Per	
			Wee	Semeste	Wee	Semeste	Wee	Semeste	
			k	r	k	r	k	r	
Ι		Core	4	60	4	60	0	0	4

PAPER-II: SUBSTITUTION REACTIONS AND STEREOCHEMISTRY

COURSE OBJECTIVES:

- Understanding the fundamental mechanism involved in electrophilic reactions, nucleophilic reactions and reactions that involve transient species.
- Understanding the basic aspects of stereochemistry such as chirality, nomenclature, stereoselectivity Vs stereospecificity, asymmetric synthesis and the conformational analysis of six membered ring systems.

COURSE OUTCOMES:

On the successful completion of course, students will be able to achieve excellency in education as follows

CO	CO statement	Knowledge
Number		level
CO1	Gain knowledge about aromaticity, isotopic labeling techniques, kinetic	K2 & K4
	isotope effect and the ambident nuclesophiles	
CO2	Get clear idea about the nucleophilic attack on saturated carbon atoms	K2 & K3
	leading to substitution reactions, different mechanisms of nucleophilic	
	substitution, effect of solvent on the rate of reaction, neighbouring group	
	participation and the alkylation of active methylene compounds.	
CO3	Use various reagents in a logical manner in organic synthesis, understand	K3 & K4
	various types of aromatic electrophilic substitution, nucleophilic	
	substitution reaction and their mechanism	
CO4	Gain knowledge about basic principles of stereochemistry, to apply various	K2 & K3
	concepts such as stereochemistry and fundamental principles of	
	stereoselectivity in organic chemistry and also to identify and differentiate	
	prochirality and chirality at centers, axis, planes and helices and determine	
	the absolute configuration.	
CO5	Acquire good foundation about conformational analysis and to differentiate	K3 & K4
	the reactive intermediates can be differentiated by their unique properties	
	through various reaction pathways to develop new and notable aromatic	
	organic compounds	

*CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	S	М	М	М
CO2	М	S	М	М	S	М
CO3	М	М	М	S	S	М
CO4	М	S	S	S	S	М
CO5	М	М	S	S	S	М

MAPPING WITH PROGRAM OUTCOMES

UNIT-I: Aromaticity and Reaction Mechanism

12 hours

Aromaticity of benzenoid, heterocyclic and non – benzenoid compounds – Huckel's rule –Annulenes. Kinetic and Non kinetic methods of determining organic reaction mechanisms – Isolation and trapping of intermediates – Isotopic labeling studies – Primary Kinetic Isotopic effect. Generation of Kinetic and Thermodynamic enolates – Hammett equation-simple problems and Taft equation. Siginificance of reaction as well as substituent constants – Ambident nucleophiles such as CN⁻, NO₂⁻, phenoxide and ambident dianions – Williamsons ether synthesis.

UNIT-II: Aliphatic Nucleophilic Substitution

12 hours

Mechanism of nucleophlic substitution reaction: S_N^1 , S_N^2 and S_N^i mechanisms – Solvent and leaving group effects and neighbouring group participation (NGP) – Substitution at carbonyl, vinylic and bridgehead system – Substitution with ambident nucleophiles- "O" Vs "C"alkylation. Role of LDA – crown ethers and phase transfer catalysts (PTC) in nucleophilic substitution reactions.

Generation of enolates – enolate selectivity (Kinetic Vs Thermodynamic) – alkylation of enolates and stereochemistry of enolate alkylation – Mechanism of ester hydrolysis – Alkylation of active methylene compounds. Asymmetric alkylation (Evans, Enders and Meyers procedures) – Preparation and synthetic utility of enamines, Finkelstein reaction – Wurtz coupling.

UNIT-III: Aromatic Electrophilic and Nucleophilic Substitution Reactions 12 hours

Aromatic electrophilic substitution: mechanism of nitration, sulfonation, Friedel – Crafts alkylation and acylation reactions – Synthesis of di and trisubstituted benzenes from benzene or monosubstituted benzenes (symmetrical tribromo benzene, 2-amino 5methylphenol, 3 - nitro 4-bromobenzoic acid, 3, 4-dibromonitrobenzene, 1,2,3 – trimethylbenzene) – Hammett and Hammett-Taft equation – Haworth reaction (for naphthalene), Scholl reaction, Vilsmeier-Haack formylation, Gattermann reaction, Reimer-Tiemann and Bischler – Napieralski reactions.

Aromatic nucleophilic substitution in aryl halides by Meisenheimer complex mechanism and benzyne mechanism. Reactions of aryldiazonium salts – Zeigler alkylation, Vicarious Nucleophlic Substitution (VNS), Chichibabin and Schiemann reactions.

UNIT-IV: Stereochemistry

12 hours

Chirality, Symmetry elements, Asymmetric and Dissymmetric chiral molecules – Calculation of number of optical isomers – Stereochemistry of mono and disubstituted cyclopropane, cyclobutane, cyclopentane and cyclohexane – Stereochemistry of tri-substituted cyclopentane, trisubstituted pentane and tetrasubstituted hexane. Description of various types of optically active compounds including allenes, cumulenes, spiranes, biphenyls, *trans* – cyclooctene.

Compounds containing two asymmetric centers; Erythro and threo isomers – Conversion of Fischer projection into perspective forms – Erythro and Threo – Inter conversion of Fischer to Sawhorse and Newman projections – Zig-Zag representation of glucose – Interpretation of homotopic, enantiotopic and diastereotopic atoms and faces – Pro-chiral carbon – Concept of *Re-* and *Si-* faces – R and S nomenclature of simple compounds – allenes, spiranes and biphenyls – Stereospecific and Stereoselective reactions – Asymmetric Synthesis-Crams rule and Felkin-Anh model. E-Z nomenclature of olefins.

UNIT-V: Reactive Intermediates and Conformational Analysis 12 hours

Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, carbenoids, benzynes and nitrenes.

Conformation of some simple 1, 2 – disubstituted ethane derivatives – Conformational analysis of disubstituted cyclohexane and their stereochemical features (geometric and optical isomerism (if shown) by these derivatives) – Conformation and reactivity of substituted cyclohexanol (oxidation and acylation) – cyclohexanone. (reduction) and cyclohexane carboxylic acid derivatives (esterification and hydrolysis) – Conformation and stereochemistry of cis and trans decalin and 9 – methyldecalin.

Distribution of Marks: Theory-80% and Problems-20%

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1.	S.M. Mukherji	Organic Reaction	McMillan India Ltd.,	1990
	and S.P. Singh	Mechanism	Chennai	
2.	Stanley Pine	Organic Chemistry	V Edition, Tata	1990
			McGraw-Hill Pub.,	
3.	Jerry March	Advanced organic	Tata McGraw-Hill	2001
	-	reaction mechanism	Pub.,5 th edition	
		and structure		
4.	Mc Murray	Organic Chemistry	V-edition, Thomson	2001
			Asia Pvt., Ltd.	
5.	Graham	Organic Chemistry	John Wiley & Sons	2000
	Solomons		Ltd.,	
6.	P.S. Kalsi	Stereochemistry,	2 nd Edition, Wiley	1993
		Conformation	Eastern Limited,	
		analysis and	Chennai.	
		Mechanism		
8.	P.S. Kalsi	Stereochemistry and	Wiley Eastern Ltd	1994
		Mechanism through		
		solved problems		
9.	R.K. Bansal	Organic Reaction	IV Edition, New Age	2003
		Mechanism	Int.,(P) Ltd.,	
11.	Peter Sykes	A Guidebook to	Orient Longman Ltd.	1999
	-	mechanism in organic	-	
		chemistry		

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1.	F. Carey and R.	Advanced Organic	Springer Science +	2007
	J. Sundberg	Chemistry-Part A and B	Business Media, 5 th	
			Ed	
2.	M. B. Smith and	Advanced Organic	John Wiley & Sons,	2001
	Jerry March	Chemistry	5 th Ed	
3.	J. Clayden, N.	Organic Chemistry	Oxford University	2012
	Greeves and S.		Press 2 nd Ed	
	Warren			
4.	M. B. Smith	Organic Synthesis	Academic Press, 3rd	2011
			Ed	
5.	R. O. C. Norman	Principles of Organic	Chapman & Hall, 3 rd	1993
	and J. M. Coxon,	Synthesis	Ed	

6.	Stuart Warren	Organic Synthesis:	Wiley India (P) Ltd	2007
		Disconnection Approach		
7.	I. L. Finar	Organic Chemistry Vol 2:	Dorling Kindersley	2009
		Stereochemistry and the	India (P) Ltd	
		Chemistry of Natural		
		product		
8.	E. N. Eliel	Stereochemistry of	Tata McGraw Hill	2008
		Carbon Compounds	Ed, Reprint	
9.	D. Nasipuri	Stereochemistry of	New Age	2005
		Organic Compounds	International (P) Ltd,	
		_	Reprint	
10.	E. L. Eliel and S.	Stereochemistry of	Wiley India Ed	2008
	H. Wilen	Organic Compounds		

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours				Credits	
	Code		Lecture Theory		Practical				
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Ι		Core	4	60	4	60	0	0	4

PAPER-III: CHEMICAL KINETICS AND ELECTROCHEMISTRY

COURSE OBJECTIVES

- To understand the kinetics of chemical kinetics and explore the reaction kinetics of fast reactions.
- To learn the various techniques, mechanism of involved in catalysis and understanding of the Ionic activity, ionic interactions, Debye-Hückel-Bjerrum model, Debye-Hückel limiting law, Debye-Hückeleory of strong electrolytes, electrical double layer, electrocapillary phenomena, surfactants, design and applications of the batteries, Fuel Cells, Corrosion and its Protection.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO	CO statement	Knowledge
Number		level
CO1	Learn the reaction rate theories and reactions in solution and to explore	K2 & K4
	the knowledge in kinetics	
CO2	Solve problems on rate/rate constants/efficiency for unimolecular	K2 & K4
	and bimolecular reactions and Plot equations and functions	
	representing kinetic behaviour.	
CO3	Gain clear concepts about transition in jablonski diagram and photo	K2 &K3
	catalysis reaction	
CO4	Acquire knowledge about strong electrolytes and based on Debye-	K3 & K4
	Huckel limiting law certain problems can be solved.	
CO5	Understand the designs of batteries, Fuel cells and ion selective	K2 & K3
	electrodes	

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	S	S	М
CO2	М	S	S	М	М	S
CO3	М	М	S	М	М	М
CO4	М	М	М	S	М	М
CO5	М	М	S	S	S	М

MAPPING WITH PROGRAM OUTCOMES

UNIT-I: Chemical Kinetics

Effect of temperature on reaction rates – collision theory of reaction rate: Lewis rigid sphere theory – molecular beams – collision cross sections – effectiveness of collisions – Potential energy surfaces – partition function and activated complex –Absolute reaction rate theory – Thermodynamic terms-Significance of entropy and volume of activation – Reactions in solution: factors determining reaction rates in solutions, effect of dielectric constant and ionic strength, – Bronsted –Bjerrum equation – Primary and Secondary salt effect, influence of solvent on reaction rates.

UNIT-II: Chemical Dynamics and Catalysis

Acid base catalysis – Mechanism of acid base catalyzed reaction, Bronsted Catalysis Law – Enzyme catalysis and its mechanism, Michaelis – Menten equation, effect of pH and temperature on enzyme catalysis – Mechanism of enzyme inhibition kinetics of surface reactions – Unimolecular reactions-Bimolecular reactions-Langmuir Hinshelwood and Elay– Rideal mechanism, Rice – Ramsperger – Kassel(RRK) theory. Rice-Ramsperger – Kassel – Marsus (RRKM) theory.

Study of fast reactions by stopped flow techniques – relexation method, flash photolysis and the nuclear magnetic resonance method.

Linear free energy relationship – Hammett equation – Taft equation-Separation of polar, resonance and steric effects.

UNIT-III: Introduction to Photochemistry

Jablonski diagram, Primary and Secondary Processes, quantum yield and its determination – chemical actinometer. Excimers and exciplexes – Kinetics of collisional quenching – Stern Volmer equations. Photochemical reactions - photoredox, photosubstitution, photoisomerization and photosensitized reactions - photovoltaic and photogalvanic cells. Chemiluminescence, Photoassisted electrolysis of water, Photosynthesis, solar energy conversions. Semiconductor photocatalysis – lasers.

Radiation Chemistry – linear energy transfer, G – value, dosimeters, radiolysis of water, solvated electrons.

UNIT IV: Electrochemistry – I

Deviation from ideal behavior ion – solvent and ion – ion interactions – Debye– Hückel – Bjerrum model, Ion association and triple ion formations – Expression for the mean activity coefficient – Debye – Hückel limiting law and its applications – Diverse ion effect – Van't Hoff factor and its relation to colligative properties – Debye – Hückel theory of strong

12 hours

12 hours

12 hours

12 hours

electrolytes –Debye – Hückel length and potential around a central ion and its interpretation – Transport of ions in Solution: Electrolytic conduction- Debye – Hückel – Onsager treatment of strong electrolytes- ionic atmosphere- Anomalous conductance of nonaqueous electrolytes.

UNIT V: Electrochemistry- II

12 hours

Diffusion – Fick's law of diffusion – electrokinetic phenomena-membrane potential. Electrical double layer – Electrocapillary phenomena – Surfactants – Lipmann's equation – Electrokinetic phenomena – Zeta potential and its applications – Structure of electrical double layer – Helmholtz – Perrin, Guoy – Chapmann and Stern models – Butler –Volmer equation for one electron transfer reaction - equilibrium and exchange current densities and symmetry factor – transfer coefficient – Cyclic voltammetry and Stripping voltammetry – principle – instrumentation- Corrosion and passivation of metals – Pourbaix diagram – Evans diagram – Batteries and Fuel cells-Ion selective electrodes.

S. No	Authors	Title	Publishers	Year of publicatio n
1.	R. G. Frost and Pearson	Kinetics and Mechanism	Wiley New York,	1961
2.	C. Capellos and B. H. J. Bielski,.	Kinetic Systems	Wiley Interscience, New York	1968.
3.	K. J. Laidler	Chemical Kinetics	Harper and Row, New York,	1987
4.	Rajaram and J.C.Kuriacose	KineticsandMechanismOfChemicalransformations	Macmillan India Ltd.	1993
5.	G. M. Harris	Chemical Kinetics	D. C. Healthand Co,	1966
6.	A. W. Anderson	Physical Chemistry of Surfaces	Wiley - Interscience, Newyork	1990
7.	Paula, Peter Atkins and Julio de	Elements of Physical chemistry	5th Ed, Oxford U. P	2012
8.	John O'M Bockris, Amula K. N. Reddy, and Maria Gamboa– Aldeco	Modern Electrochemistry 2A, 2nd Ed,	Kluwer Academic / Plenuim Publishers, NewYork	2000
9.	Mordechay Schlesinger	Modern Aspects of Electrochemistry	Issue 43, Springer, Netherlands	2009
10.	G. L. Agarwal	Basic Chemical Kinetics	Tata McGraw Hill	1990

Distribution of Marks: 7	Гheory-80% а	and Problems-20%
--------------------------	--------------	------------------

TEXT BOOKS

11.	K. J. Laidler	Chemical Kinetics	Tata Mc Graw Hill	1990
12.	Robert J Silbey,	Physical Chemistry	4 th Ed,NJ Hoboken:	2015
	Robert A Alberty and		Wiley	
	Moungi G Bawendi			
13.	N. J. Turro	Modern molecular	Benjamin/Cummings	1978
		photochemistry	, Menlo Park,	
			California	
14.	Revise G. W.	Physical Chemistry	Narosa publishing	2011
	Castellan,		House ,New Delhi,	
			Ed,	
15.	Gordon. M. Barrow	Physical Chemistry	Tata McGraw Hill	2011
			Edition, New York,	
16.	L. R. Puri, Y. R.	Principles of Physical	Vishal Publishing Co,	2012.
	Sharma and R. S.	Chemistry	4th edition edition	
	Pathania,			
17.	J. N. Gurtu and A.	Advanced Physical	Pragathi Prakashan,	2014
	Gurthu,	Chemistry	Meerut, Revised,	

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1.	S.Glasstone	Introduction To	Affliated East West	1960
		Electrochemistry	Press, New Delhi,	
2.	J.O.M.Bokris and	Electrochemistry,	New York,	1977
	A.K.N.Reddy	Vols.1 and 2		
		Plenum		

TEACHING METHODOLOGY:

- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

ELECTIVE-PAPER-A: BIOINORGANIC CHEMISTRY AND SEPERATION TECHNIQUES

Semester	Subject	Category		Instruction Hours					Credits
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Ι		Elective	3	45	3	45	0	0	3

COURSE OBJECTIVES:

- To have a knowledge about protein metallo biomolecules, role of metal ions in biological process, storage and transport of metal ions in biological system, chemical toxicology and uses of inorganic compounds as therapeutic agents.
- To learn about polymeric bio-organic molecules such as carbohydrates, proteins, nucleic acids, antibiotics, vitamins and to understand about various types of separation techniques for organic and biomolecules.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO	CO statement	Knowledge
Number		level
CO1	To identify the occurrence, active site structure and functions of some	K2 & K3
	transition metal ion containing metalloproteins or enzymes	
CO2	Gain better knowledge about the structure of metallo enzymnes,	K2 & K3
	importance of transport and storage metals in biological systems.	
CO3	Acquire the skill of relating all the biomolecules in various biological	K3 & K4
	systems and can gain knowledge about the biological importance of	
	proteins, nucleic acids and carbohydrate	
CO4	Gain clear knowledge about the chemistry and physiological action of	K3 & K4
	antibiotics, vitamins and carotenoids	
CO5	To apply principles of separation and isolation techniques in organic	K2 & K3
	reactions leading to the separation and purification of various products	

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	М	М	S	S
CO2	М	М	S	S	S	М
CO3	М	S	S	S	М	М
CO4	М	S	S	М	М	М
CO5	S	S	S	S	S	S

MAPPING WITH PROGRAM OUTCOMES

UNIT-I: Metallo Proteins

Iron containing proteins: Metalloporphyrins – Haemoglobin and myoglobin – Structures and work functions – synthetic oxygen carriers – Cytochrome – structure and work function. Non – heme oxygen carriers – Electron carrier proteins – Iron sulphur proteins – Ferridoxin and Rubredoxin – Magnesium containing proteins: Chlorophyll – structure – photosynthetic sequence – Copper containing proteins: Classification – blue copper proteins – structure of blue copper electron transferases – copper protein as oxidases – cytochrome c oxidase – mechanistic studies of cytochrome c oxidase

UNIT II: Metallo Enzymes

9 hours

Metalloenzymes: Carboxy peptidase A – structure and function ; Carbonic anhydrase – inhibition and poisoning – Corrin ring system – Vitamin B_{12} (cyanocobalamin) and B_{12} coenzymes – *In vivo* and *In vitro* nitrogen fixation – nitrogen cycle.

Essentials of trace elements and chemical toxicology: Trace elements in biological system – sodium, potassium, calcium, zinc and copper – Metal ion toxicity - classes of toxic metal compounds – detoxification.

Metals in medicine: Antiarthritis drugs – Au and Cu in rheumatoid arthritis – Li in psychiatry – Pt, Au and metallocenes in anticancer drugs- metals in radiodiagnosis and magnetic resonance imaging.

Transport and storage of metals: Mechanism – Fe, Cu, Zn and V storage and transport – metallothioneins – Molecular mechanism of iron transport across the membrane – sodium and potassium ion pumps.

UNIT-III: Biomolecules

9 hours

Amino acids and Proteins: Amino acids and Protein structure, peptides and their synthesis – (tripeptide using the amino acids glycine, alanine, lysine, cysteine, glutamic acid and arginine) – Analysis of N– terminal and C – terminals in a polypeptide. Sanger method, Edman degradation and Enzymatic analysis. Merrified synthesis – Primary, secondary and tertiary structure of proteins.

Nucleic acids and Carbohydrates: Chemistry of nucleic acids, nucleosides and nucleotides – Structure RNA and DNA and their biological importance – Pyranose and furanose forms of aldohexose and ketohexose – methods used for the determination of ring size – conformation of aldohexopyranose – structure and synthesis of lactose and sucrose. A brief study of starch and cellulose.

9 hours

UNIT-IV: Antibiotics, Vitamins and Carotenoids

Biomolecules: Antibiotics and vitamins: A detailed study of structure, stereochemistry and synthesis of penicillin, cephalosporin – Chemistry and physiological action of ascorbic acid, thiamin, riboflavin and pyridoxine – Elementary aspect of vitamin A, E, K and B₁₂ - Synthesis of vitamin A₁ using Reformarsky method, Wittig reaction method, jansen method, Attenburrow method, Isler method – Synthesis of Vit- A₂ -Carotenoids – introduction – synthesis of α -carotene, β -carotene, γ -carotene and lycopene.

UNIT V: Separation Techniques

9 hours

Basic aspects of thin-layer chromatography (TLC), column chromatography and flash vacuum column chromatography – Principles, theory, instrumentation and applications of Ion – exchange column Chromatography, Gel-permeation Chromatography, Gas chromatography and High Performance Liquid chromatography (HPLC) – Interpretation of chromatogram and separation of components from the mixture.

Distribution of hours: Theory-100%; Problems-Nil

S.No	Authors	Title	Publishers	Year	of
				publication	
1.	S. J. Lippard and	Principles of	BergPanima	1997	
	J. M. Berg	Bioinorganic Chemistry	Publishing		
			Corporation		
2.	W. Kaim and B.	Bioinorganic Chemistry:	John Wiley and	1994	
	Schwederski	Inorganic Elements in	Sons		
		the Chemistry of Life,			
		(An Introduction and			
		Guide),			
3.	J. E. Huheey, E.	Inorganic Chemistry,	Pearson	2004	
	A. Keiter and R.	Principles of Structure	Education		
	L. Keiter.	and Reactivity			
4.	F. A. Cotton and	Advanced Inorganic	Wiley Eastern	1998	
	G. Wilkinson,	Chemistry			
5.	Geoffrey L.	Principles of	McGraw-Hill	1995	
	Zubay, William	Biochemistry	Education		
	W. Parson and				
	Dennis E. Vance				
6.	David L. Nelson	Principles of	WH Freeman	2017	
	and Michael M.	Biochemistry			
	Cox				

TEXT BOOKS

9 hours

7.	John McMurray	Organic Chemistry	International Edition8 th Ed	2017
8.	I.L.Finar,	Organic Chemistry Vol 2, Stereochemistry and the Chemistry of Natural Product	Dorling Kindersley India (P) Ltd	2009
9.	B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell,	Vogel's text book of Practical Organic Chemistry	Pearsons Education (Singapore) PTE Ltd, 3 rd Indian Reprint	2005
10.	Douglas A. Skoog, F. James Holler and Stanley R. Crouch	Principles of Instrumental Analysis	CENAGE Learning, 7 th Ed	2018
11	D. A. Skoog and D. M. West	Fundamentals of Analytical Chemistry	Holt Rinehart and Winston Publications, 4 th Ed	1982
12	Douglas A. Skoog, Donald M. West, F. James and Stanley R. Crouch,	Fundamentals of Analytical Chemistry	8 th Ed	2004
13	Lloyd R. Snyder, Joseph J. Kirkland and John W. Dolan,	Introduction to Modern Liquid Chromatography	Wiley 3 rd Ed	2009

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1.	Gurdeep	Chemistry of natura	l Himalaya	2018
	Charwal	products	publishing	
	Charwar,		house	
2.	O.P. Agarwal,	Chemistry of natura	l GOEL	2015
		products	Publishing	
			house	
3.	I.L. Finar,	Organic chemistry	, Volume II,	2002
		Stereochemistry an	d Pearson	
		chemistry of natura	l Education	
		products		

TEACHING METHODOLOGY:

- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					Credits
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Ι		Elective	3	45	3	45	0	0	3

ELECTIVE PAPER-B: DRUG DESIGN

COURSE OBJECTIVES:

- To understand the concepts of drug design, drug metabolism, mechanism of drug receptor binding and its structure activity relationship qualitatively and quantitatively.
- To enhance the knowledge in the various areas of molecular modelling, molecular docking and drug design techniques with detail concepts of all the mentioned areas.

COURSE OUTCOME:

> On completion of the course, the student should be able to:

CO	CO statement	Knowledge
Number		level
CO1	Learn about the ligands based on its electronic level using computational quantum chemistry	K2, K3 & K4
CO2	Justify the role and importance of the various disciplines involved in the different phases of drug discovery and development, identification of gobal reactivity indicators of compounds using computer methodologies and molecular modeling including artificial intelligence methods.	K2, K3 & K4
CO3	Get clear idea about the use of computational chemistry in structure based drug design, drug development as a process involving target selection, lead discovery using computer-based methods and computational chemistry/high-throughput screening.	K3 & K4
CO4	Describe the safety evaluation, bioavailability, clinical trials, essentials used for drug development and also acquire knowledge about molecular recognition, computer aided drug design and toxicology as applied to the development of new medicines	K2, K3 & K4
CO5	Get knowledge about molecular docking, simulation and dynamic in drug designing and development process.	K2, K3 & K4

*CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	М	М	М
CO2	М	S	М	М	S	М
CO3	М	S	М	S	S	М
CO4	М	S	S	S	S	М
CO5	М	М	S	S	S	S

MAPPING WITH PROGRAM OUTCOMES

UNIT-I Electronic Structure methods

Quantum chemical methods - semi-empirical and ab initio methods - Conformational analysis, energy minimization, comparison between global minimum conformation and bioactive conformation - Predicting the mechanism of organic reactions using electronic structure methods - Complete and constrained conformational search methods, their advantages and disadvantages - Theoretical aqueous solvation calculations for design of ligands - Conformational interconversion, transition-state determination and their role in designing rigid analogs.

UNIT-II Molecular modeling

Molecular Mechanics, Quantum Mechanics, Energy minimization, geometry optimization, conformational analysis, global conformational minima determination - approaches and problems - Bioactive vs. Global minimum conformations - Automated methods of conformational search - Advantages and limitations of available software - Molecular graphics - Molecular properties, reactivity, Homo, Lumo, Electrostatic potential - Solvent accessible surface - Computer methodologies behind molecular modeling including artificial intelligence methods.

UNIT-III DRUG DESIGN

Drug design strategies-rational drug design: Inhibitors of ACE; structure based drug design: Anti HIV agents; ligand based approach - Design of agonist and antagonist: β 2-Agonists and the treatment of asthma - Discovery of the H2–receptor antagonist - Transition state analogues - Pro drug concept - prodrugs of ampicillin, elanapril and propranolol.

SAR: Qualitative versus quantitative approaches - advantages and disadvantages - Random screening - Non-random screening.

UNIT-IV Qsar and Drug Metabolism

QSAR - Electronic effects - Hammett equation - lipophilicity effects - Hansch equation, stericeffects - Taft equation - Experimental and theoretical approaches for the determination of physico-chemical parameters - parameter inter-dependence.

Adsorption, distribution, metabolism and elimination - Methods of drug administration, drug solubility and lipophlicity, clogP. cell membrane permeability, blood brain barrier Lipinski's rule of five – Metabolism - first pass metabolism, chemical and metabolic stability-bioavailability and bioequivalence - concept of drug half life -therapeutic window.

UNIT - V Molecular docking and dynamics

9 hours

9 hours

9 hours

9 hours

9 hours

Rigid docking, flexible docking, manual docking - Advantages and disadvantages of Flex-X, Flex-S, Autodock and Dock softwares, with successful examples.

Molecular dynamics: Dynamics of drugs, biomolecules, drug-receptor complexes, Monte

Carlo simulations and Molecular dynamics in performing conformational search and docking

- Estimation of free energy from dynamical methods

Distribution of Marks: Theory-80% and Problems-20%

S. No	Authors	Title	Publishers	Year of publication
1.	Burger	Medicinal Chemistry and Drug Discovery	5 th Edn	1995
2.	R. B. Silverman	Chemistry of Drug Design and Drug action	Acad. press	2004
3.	Graham Patrick	An Introduction to Medicinal Chemistry	2nd Edn. Qxford	2010
4.	N. K. Jain	Advances in Controlled and Novel Drug Delivery	CBS	2001
5.	Lednicer	The Organic Chemistry of Drug Synthesis	Vol.1, 5 th Edition, John Wiley & Sons	2001
6.	Foye's	Principles of Medicinal Chemistry,	Sixth Edition, Wolters Kluwer	2008
7.	G.R. Chatwal	Medicinal Chemistry	Himalaya Publishing House	2007
8.	V.K. Ahluwalia and M. Chopra	Medicinal Chemistry	Ane Book Pvt. Ltd.	2008

TEXT BOOKS

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1.	R.B. Silverman	Organic Chemistry of Drug Design and Drug Action	Academic Press	2012
2.	William H, Malick JB	Drug Discovery and Development	Humana Press Clifton.	2004

TEACHING METHODOLOGY:

• Board and chalk

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos

SYLLABUS DESIGNERS:

- 1. 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Ι		Elective	3	45	3	45	0	0	3

ELECTIVE PAPER-C: GREEN CHEMISTRY

COURSE OBJECTIVES

- To understand the green chemistry strategies for designing the chemical synthesis.
- To make the students knowledgeable about solvent free synthesis, ultrasound and microwave assisted green synthesis

COURSE OUTCOME

> On completion of the course, the student should be able to:

CO	CO statement	Knowledge
Number		level
C01	Gain knowledge about the basic principles and designing of safer chemicals to produce biodegradable products	K2 & K3
CO2	Get clear idea about the solvent - free green synthesis, ultrasound and microwave assisted green synthesis	K3 & K4
CO3	Understand polymer supported catalytic reactions and ionic liquids as green solvents in synthesizing various products	K3 & K4
CO4	Acquire knowledge about the phase transfer catalysis in green synthesis	K2 & K3
CO5	Gain clear knowledge about industrial case studies such as reverse tanning, vegetable tanning and chrome tanning	K3 & K4

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	М	М	М
CO2	S	S	М	М	S	М
CO3	М	S	S	М	S	М
CO4	М	S	S	М	S	М
CO5	М	М	S	S	S	S

UNIT- I: Basic Principles of Green Chemistry

Basic principles - prevention of waste/by-products, maximum incorporation of the reactants (starting materials and reagents) into the final product, prevention or minimization of hazardous products, designing safer chemicals, energy requirements for synthesis, selection of appropriate solvent, selection of starting materials, use of protecting groups, use of catalyst and products designed should be biodegradable.

UNIT- II: Ultrasound and Microwave Assisted Green Synthesis 9 hours

Ultrasound: Introduction, instrumentation, the phenomenon of cavitation -Sonochemical esterification, substitution, addition, alkylation, oxidation, reduction and coupling reactions - Microwaves: Introduction, concept, reaction vessel/ medium, specific effects, atom efficiency (% atom utilization), advantages and limitations - N-alkylation and alkylation of active methylene compounds and Diels –Alder reactions. Reactions in water and reaction in organic solvents - Solvent - free reactions and deprotection of esters.

UNIT- III: Ionic-Liquids as Green Solvents

Introduction - structure, synthesis and applications of some important ionic liquids in organic synthesis - Polymer supported reagents in green synthesis - Introduction - properties and advantages of polymer supported reagents and choice of polymers - Substrate covalently bound to the support - Synthesis of oligosaccharides - intramolecular cyclisation - Selective chemical reactions on one aldehyde group of symmetrical aldehydes - Asymmetric synthesis - Reagent linked to a polymeric material - Preparation of sulfonazide polymer and application in diazotransfer reaction - Synthesis of polymer bound per acid and its applications - synthesis of polystyrene tin dichloride resin and its applications - Polymer supported catalytic reactions - Preparation of polymer supported AlCl₃ and applications - polymer supported photosensitizers.

UNIT- IV: Phase Transfer Catalysis In Green Synthesis

Introduction - mechanism of phase transfer catalyst reaction - types and advantages of phase transfer catalyst - types and applications of phase transfer reaction - Nitriles from alkyl or acyl halides, alkyl fluorides, alcohols, azides from alkyl halides - generation of dichlorocarbenes - addition to olefins - elimination reaction - alkylation reactions - Willamson synthesis - Benzoin condensation - Darzen reaction - Michael reaction - Wittig reaction - oxidation under PTC condition and reduction.

UNIT-V: Industrial Case Studies

9 hours

9 hours

9 hours

9 hours

Methyl Methacrylate (MMA) - Greening of Acetic acid manufacture - Vitamin-C -Leather manufacture -Types of Leather- Difference between Hide and Skin - Tanning – Reverse tanning -Vegetable tanning - Chrome tanning - Fat liquoring – Dyeing – Application - Polyethylene-Ziegler Natta Catalysis - Metallocene Catalysis - Ecofriendly Pesticides and Insecticides.

Distribution of marks : Theory -100%

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1.	V.K.Ahluwalia and M.	New Trends in	II Edn.,	2007
	Kidwai	Green	Anamaya	
		Chemistry	publishers New	
			Delhi	
2.	Mike Lancaster	Green	II Edition	2002
		Chemistry and		
		Introductory text		
3.	V. K. Ahluwalia and R.	Organic	New Delhi	2003
	Aggarwal, Narosa	Synthesis,		
		Special		
		Techniques		
4.	Mike Lancaster	Green	Royal Society of	2002
		Chemistry – an	Chemistry, UK	
		introduction text		
5.	W. B. Weber, G. W.	Phase Transfer	Springer	1977
	Gokel, Springer, Berlin,.	Catalysis in		
		Organic		
		Synthesis		

REFERENCES BOOKS

S.No	Authors	rs Title		Year of
				publication
1.	R. Sanghi and M.	Green Chemistry -	New Delhi	2003
	Srivastava	Environment		
		Friendly		
		Alternatives		
2.	P. T. Anastas and J. C.	Green Chemistry -	Oxford	1988
	Warner	Theory and	University	
		Practice	press. Oxford	
3.	N. K. Mathur, C. K.	Polymers as Aids	Academic	1980
	Narang and R. E. Williams	in Organic	Press, NY	
		Synthesis		

4.	E. V.	Dehmlov,	S.	S.	Phase	Transfer	2 nd	Edn.,	1983
	Dehmlov			Catalysis		Verlagchemie,			
							w lenn	em	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos

SYLLABUS DESIGNERS:

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4.Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5.Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6.Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7.Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8.Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

SELF STUDY PAPER (OPTIONAL)

Semeste	Subjec	Category		Instruction Hours						
r	t Code		Lecture		Theory		Practical		its	
			Per	Per	Per	Per	Per	Per		
			Week	Semeste	Week	Semeste	Wee	Semeste		
				r		r	k	r		
Ι		Self study								
		Paper	-	-	-	-	-	-	2*	
		(Optional)								

ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD

COURSE OBJECTIVES

- To provide an insight into the chemical reactions and to apply the principles in analysing pollution in water, air and soil environment.
- To provide an understanding on the fate of chemicals on the environment and suggest relevant interventions.

COURSE OUTCOMES

> On the successful completion of course, students will be able to

СО	CO statement	Knowledge level
Number		
CO1	Gain the knowledge on atmosphere of earth, global warming and greenhouse gases	K1 & K2
CO2	Gain the knowledge on contaminants, their natural pathways of degradation and their abatement	K2 & K3
CO3	Acquire knowledge about the various physicochemical parameters which affect the environment	K3
CO4	Have a better understanding of soil and water quality parameters by analysing the contaminated samples	K2 & K4
CO5	Gain knowledge on the various industrial wastewater treatment methods	K3 & K4

*CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

			CONLD.			
COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	М	М	М	М
CO2	М	S	М	М	М	М
CO3	М	S	М	М	М	S
CO4	М	S	М	М	М	S
CO5	М	S	М	М	М	S

MAPPING WITH PROGRAM OUTCOMES:

UNIT – **I** : Atmospheric Chemistry

The atmosphere of Earth-Contaminant behavior in the environment-Green house effect - Global Warming -Acid rain and - Ozone layer depletion.

Fundamental concepts in chemistry – Elements and compounds – Atomic structure – Formation of molecules – Solutions: normality, molality and molarity – Ionization – radicals – Expressing concentrations.

UNIT II: Contaminants and Their Natural Pathways of Degradation and Their Abatement

Carbon Cycle, Nitrogen Cycle, Sulphur Cycle, CO formation in atmosphere, Organic Pollutants, Pollution from Combustion Systems, Coal, Combustion, Photochemical Smog and Indoor Air Pollution

UNIT- III: Physicochemical Parameters

pH-Electrical conductivity – Total solids – Total suspended solids – Dissolved oxygen – Carbonates – bicarbonates – Hardness – Calcium – Magnesium – Total alkalinity – Fluoride – Iron – Nitrate – Nitrite –Phosphate Biochemical Oxygen Demand (BOD) – Chemical Oxygen Demand (COD). Biological Parameters: Macrophytes – Phytoplankton – Zooplankton – Primary Productivity. Bacteriological measurements-Standard Plate count method – MPN (Most Probable number)

UNIT-IV: Soil and Water Analysis

Nature of soil – Soil macro and micronutrients – Soil structure and texture – Soil water – Soil air – Soil Temperature – Soil organic matter .Water - Characteristics of bodies of water-Properties of water – Hydrogen Bonding – covalent bonding – ionic bonding –Water sampling: Sampling stations-Collection of water samples – Handling and Preservation. Water analysis: Physical parameters: Colour – Temperature – Transparency – Turbidity.

UNIT - V: Industrial Chemistry

Classification of Industries Based on Environmental Impacts, Criteria for Selection of Site for Establishment of Industry, Socio-economic and Environmental Impacts of Industries, Legal and Statutory Requirements, Manufacturing Process and the Sources of Wastes, Characterization & Treatment of Industrial Waste with respect to Paper and Pulp, Tannery, Textile, Dairy, Sugar, Petrochemical, Pharmaceutical, Oil Refinery and Power Plants-Thermal, Gas Based and Hydroelectric.
Distribution of Marks: Theory-90% and Problems-10%

S.No	Authors	Title	Publishers	Year of
				publication
1.	Manahan,Stanley	Fundamentals of	Boca Raton,	2001
	E.	Environmental Chemistry	CRC Press,	
			LLC	
2.	Sonja Krause,	Strong Chemistry of the	Elsevier Science	2002
	Herbert M. Clark,	Environment	& Technology	
	James P. Ferris,			
	Robert L			
3.	Eugene R.	Applications of	CRC Press,	2000
	Weiner 2000	Environmental Chemistry	LLC	
	CRC Press, LLC			
4.	Clair N.Sawyer,	Chemistry for	McGraw Hill,	
	Perry L.	environmental	5 th Edition	2002
	McCarty, Gene	engineering and science		
	F.Parkin,	_		

TEXT BOOKS

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours				Credits	
	Code		Le	ecture	T	heory		Practical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
П		Core							
			3	45	3	45	0	0	3

PAPER-IV: COORDINATION CHEMISTRY

COURSE OBJECTIVES:

- To learn about thermodynamic and stereochemical aspects of complex formation, various theories of complexes, magnetic properties, term symbols and energy level diagram of weak and strong field ligands, charge transfer spectra and spectral properties of lanthanides and actinides.
- To learn about various mechanisms of substitution and electron transfer reactions and to study the recent development in the catalysis

COURSE OUTCOMES:

> (On t	the successfu	l completion	of course,	students	will be	able to
-----	------	---------------	--------------	------------	----------	---------	---------

СО	CO statement	Knowledge
Number		level
CO1	Get better understanding of stability constant, types of macrocyclic ligands and nomenclature of chiral complexes	K2 & K4
CO2	Identify the principles, structure and reactivity of selected coordination complexes with the help of crystal field theory and molecular orbital theory	K2 & K3
CO3	Interpret their electronic spectra, magnetic properties and can gain knowledge about the distortion in co-ordination complexes concept of sigma and pi bonding in complexes	K2 & K4
CO4	Get clear knowledge about the ISM, OSM, reaction mechanism of coordination compounds and the application of substitution reactions in the synthesis of Platinum and Cobalt complexes	K3 & K4
CO5	Identify the bonding aspects of simple organometallic compounds, different types of organometallic reactions and to explain different catalytic reactions	K2 & K3

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	М	М	S	S
CO2	М	М	S	S	S	М
CO3	S	S	S	S	S	S
CO4	М	S	S	М	М	М
CO5	М	S	S	S	М	М

UNIT-I: Stability of Complexes

9 hours

Stability of complexes – Factors affecting stability of complexes – Thermodynamic aspects of complex formation – Stepwise and overall formation constants – Stability correlations – statistical factors and chelate effect – Determination of stability constant and composition of the complexes – Formation curves and Bjerrum's half method – Potentiometric method – Spectrophotometric method – Ion exchange method – Polorographic method and Continuous variation method (Job's method)

Stereochemical aspects – Stereoisomerism in inorganic complexes – Isomerism arising out of ligand distribution and ligand conformation – Chirality and nomenclature of chiral complexes; Application of ORD and CD in the identification of complexes.

Macrocyclic ligands - Porphyrins, Corrins, Schiff's bases and crown ethers.

UNIT-II: Metal – Ligand Bonding

9 hours

Crystal field theory – Splitting of d – orbitals under various geometries – factors affecting splitting, CFSE, evidences for CFSE (Structural and thermodynamic effects), spectrochemical series – Jorgensen relation – site preferences – Jahn Teller distortion – Dynamic and Static J.T. effect – Application of CFT – Magnetic properties – spectral properties and Kinetic properties – Limitations of CFT – Evidences for Metal – Ligand overlap.

MOT – MO theory and energy level diagrams concept of Weak and strong fields – Sigma and pi bonding in octahedral, square planar and tetrahedral complexes – Nephlauxetic effect – Magnetic properties of complexes – Comparison of CFT and MOT of bonding in octahedral complexes.

UNIT-III: Electronic Spectra of Complexes

9 hours

Spectroscopic term symbols for d^n ions – derivation of term symbols and ground state term symbol – Hund's rule – Selection rules – breakdown of selection rules – spin orbit coupling, band intensities, weak and strong field limits – correlation diagram – Energy level diagrams – Orgel diagram for weak field Oh and Td complexes – Splitting of energy level due to Jahn-Teller distortion – Modified orgel diagram – Limitiations of orgel diagram Tanabe– Sugano(T-S) diagrams – Evaluation of Dq and B values for d² –d⁸ complexes – charge transfer – spectra – Complications in band classification between Lf(d-d) and CT bands – Comparison between d-d bands and CT bands – Numerical problems – Lanthanides and Actinides – Spectral properties-Lanthanide contraction.

UNIT IV: Electron Transter Reactions

Electron transfer reactions – Potential energy well diagram – Inner sphere (ISET) and outer sphere (OSET) electron transfer processes – Differences between ISM and OSM – Role of bridging ligand with ISET reaction – formation and rearrangement of precursor complexes – Nature of bridging ligand – fission of successor complexes – Complementary and non complementary ET reactions – Cross reactions and Marcus Hush theory.

Reaction mechanism of coordination compounds – Types of ligand substitution reactions – mechanism; Dissociative mechanism (D), Associative mechanism (A) and interchange mechanism (I).

UNIT-V: Substitution Reactions

Labile and Inert complexes – Substitution Reaction in octahedral complexes – replacement of coordinated water, mechanism of acid hydrolysis, base hydrolysis – DCB mechanism – direct and indirect evidences in favour of the mechanism – Ligand substitution reactions without cleavage of M-L Bond – Anation Reactions – Substituion in square planar complexes – General mechanism, Trans effect – influences of entering, leaving and other groups. Application of trans effect – synthesis of isomers of Pt(II) complexes – theories of trans effect and cis-trans isomerisation reaction – Application of substitution reactions in the synthesis of Platinum and Cobalt complexes.

Distribution of hours: Theory-70%; Problems-30%

TEXT BOOKS

9 hours

9 hours

S.No	Authors	Title	Publishers	Year of
1.	H. J. Emelius and Sharpe	Modern aspects of Inorganic chemistry	Universal book stall, New Delhi	1989
2.	F. Basolo and R.G. Pearson	Mechanism of Inorganic reactions	Wiley Eastern	1967
3.	J. E. Huheey, E. A. Keiter and R. L. Keiter	Inorganic chemistry- Principles on structure and reactivity	4 th Ed, Pearson- education	2002
4.	F. A. Cotton and G.Wilkinson	Advanced Inorganic Chemistry	Wiley Eastern	1988
5.	S. F. A. Kettle	Co-ordination compounds	ELBS	1973
6.	K. F. Purcell and J. C. Kotz	Inorganic Chemistry	WB Sanders Co, USA,	1977
7.	D. F. Shriver, P. W. Atkins and C. H. Longford	Inorganic Chemistry	ELBS, 2 nd Ed	1994
8.	R. B. Heslop and K. Jones	Inorganic Chemistry	Elsevier	1976
9.	D. Bannerjea	Co-ordination Chemistry	TATA Mcgraw Hill	1993
10.	M. L. Tobe	Inorganic Reaction Mechanism	Nelson	1972
11	K.Burjer	Co-ordination Chemistry Experimental Methods,	Butterworths	1973
12	B.N.Figgis,	Introduction to Ligand Fields	Wiley Eastern Ltd,	1976
13	W.E.Addision	Structural Principles of Inorganic Chemistry	Longman	1961

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1.	S.F.A. Kettle	Coordination Chemistry	EIBS	1973
2.	K. Burger	Coordination Chemistry	Burter Worthy	1973
3.	K.F. Purcell and J.C. Kotz	Inorganic Chemistry	WB Saunders Co., USA	1977

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

PAPER-V: ORGANIC REACTION MECHANISMS AND

Semester	Subject	Category		Instruction Hours					Credits
	Code		Le	Lecture Theory			Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
II		Core							
			3	45	3	45	0	0	3

REARRANGEMENTS

COURSE OBJECTIVES:

- Understanding addition, elimination, rearrangement and naming reactions along with their mechanism and synthetic utility.
- Understanding various types of oxidation and reduction reactions along with their mechanism and synthetic utility.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO	CO statement	Knowledge
Number		level
CO1	Get a clear picture about the addition reactions happening through nucleophilic, electrophilic groups and to learn about the addition reactions between double bonded carbon compounds	K2 & K3
CO2	Gain knowledge on the nucleophilic and electrophilic additions to carbonyl compounds and naming reactions	K2 & K3
CO3	Obtain an outline about elimination reactions and the rules used to study elimination reactions with some specific examples	К3
CO4	Acquire knowledge about the reagents which causes various rearrangement reactions	K2 & K3
CO5	Learn about the basic mechanism of oxidation in various organic compounds such as alcohols, aldehydes, ketones, olefins etc and two types of reduction reactions like complete reduction and selective reduction using different reducing agents	K2 & K4

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	М	М	S	S
CO2	М	М	S	S	S	М
CO3	М	М	М	М	S	М
CO4	М	S	S	S	S	М
CO5	М	S	S	S	М	S

MAPPING WITH PROGRAM OUTCOMES

UNIT-I: Addition to Carbon-Carbon Double Bond

9 hours

Electrophilic addition to carbon – carbon double and triple bonds – Nucleophilic addition to carbon–carbon multiple bonds – Generation and addition of carbenes-Michael addition and Robinson annulation.

Hydroxylation of olefinic double bonds (OsO₄, KMnO₄); Woodward and Prevost oxidation – Epoxidation using peracids including Sharpless epoxidation – Ozonolysis. Hydrogenation (homogenous and heterogeneous) and Transfer hydrogenation – Hydroboration – Hydration of carbon-carbon double and triple bonds.

UNIT-II: Addition to Carbon-Oxygen Double Bond

Nucleophilic addition to -C=O bond -A study of Mannich, benzoin, Darzen's glycidic ester, Stobbe and Knovenagel condensation reactions - Wittig, Wittig-Horner olefination reactions; Sulfur and Sulfonium ylides and their reactions - Julia olefination and Peterson alkene synthesis - Asymmetric reduction of carbonyl functions (Corey's procedure).

UNIT-III: Elimination

Elimination reactions: E1, E2, E1cb and Ei-elimination – Conformation of mechanism; solvent, substrate, leaving group effects – Typical elimination reactions – dehydration, dehydrohalogenation and dehalogenation – Saytzeff's *Vs* Hoffmann elimination; Stereochemistry of E_2 eliminations – Elimination in cyclohexane ring system; Mechanism of pyrolytic eliminations – Examples: Chugaev reactions and Cope elimination – Hoffmann degradation and pyrolysis of esters.

9 hours

9 hours

UNIT-IV: Molecular Rearrangments and Reactions

A study of mechanism of the following rearrangements: Beckmann, Curtius, Hofmann, Schmidt, Lossen, Pinacol, Wagner – Meerwin, Demjanov, Dienone – Phenol, Favorski, Benzidine, Claisen, Cope, Sommlet – Hauser, Pummerer, Baeyer – Villiger, Wolf, Stevens and Von – Richter rearrangements.

A study of the following name reactions: Dieckmann cyclization, Hofmann – Loffler Freytag reaction, Mitsunobu reaction, Shapiro reaction, Eschenmoser – Tanabe and Ramburg – Backlund reactions.

UNIT-V: Oxidation and Reduction Reactions

Oxidation of methylene to carbonyl, oxidation of aryl methenes – allylic oxidation of olefins – Oxidation with Cr (including PCC, PDC, Jones) and Mn (including MnO_2 and $BaMnO_4$) reagents; Oxidation with LTA, DDQ, $Hg(OAc)_2$ and SeO_2 ; Oxidation using DMSO either with DCC or Ac_2O or Oxaloyl chloride; Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent.

Clemmenson and Wolf-Kishner reduction – Huang Millon modification – Birch reduction and MPV reduction. Reduction with sodium borohydride, lithium aluminium hydride, tritertiarybutoxyaluminium hydride, sodium Cyanoborohydride, Zn(BH₄)₂, DIBAL-H, Red-Al, Et₃SiH and Bu₃SnH. Selectrides – Selectivity in reduction 4-t-butylcyclohexanone using selected hydride reductions.

S.No	Authors	Title	Publishers	Year of publication
1	Jerry March	Advanced Organic Chemistry	John Wiley & Sons, 5 th Ed	2001
2	F. Carey and R. J. Sundberg	Advanced Organic Chemistry-Part A and B	Springer Science 5 th Ed	2007
3	M. B. Smith and Jerry March	Advanced Organic Chemistry	John Wiley & Sons, 5 th Ed	2001

Distribution of hours: Theory-90%; Problems-10%

TEXT BOOKS

9 hours

4	J. Clayden, N. Greeves and S. Warren	Organic Chemistry,	Oxford University Press, 2 nd Ed	2012.
5	M. B. Smith	Organic Synthesis,	Academic Press 3 rd Ed	2011
6	R. O. C. Norman and J. M. Coxon,	Principles of Organic Synthesis	Chapman & Hall, 3 rd Ed	1993
7	Stuart Warren	Organic Synthesis	Disconnection Approach, Wiley India (P) Ltd	2007
8	V.K.Ahluwalia	Oxidation in Organic Synthesis	CRC Press, 1 st Ed	2012
9	V.K.Ahluwalia	,Reduction in Organic Synthesis	CRC Press, 1 st Ed	2012

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

- 1. Dr. Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours				Credits	
	Code		Le	ecture	T	heory		Practical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
II		Core							
			4	60	4	60	0	0	4

PAPER-VI: QUANTUM CHEMISTRY AND ANALYTICAL TECHNIQUES

COURSE OBJECTIVES

- To learn the principles of quantum mechanics of simple systems, quantum mechanical treatment of multi electron atoms.
- To learn the principles, instrumentation, interpretation and applications of micro wave, IR, Raman spectroscopy, Polarography, Amperometry, Coulometry, various thermal analysis, various elemental analysis and surface analysis techniques

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Numbe	CO statement	Knowledg e level
r		
CO1	Revise and update the mathematical concepts of vectors and tensors to chemical systems by solving eigenvalue and eigenvector problems in matrices and first and second order differential equations that are used for solving the time independent Schrodinger equation, particle in a potential-free box, particle on a ring, harmonic oscillator and particle in a Coulomb potential exactly and demonstrate the solutions for hydrogen atom and molecular rotations and vibrations	K2 & K3
CO2	Calculate the energy of simple mujltielectron atoms and molecules, solve all the model problems in quantum mechanics for which exact analytical methods and solutions are available and will apply them to analyze the basis behind the postulatory method of quantum mechanics	K3 & K2
CO3	Gain knowledge about the basic principles of rotational and vibrational spectroscopic techniques in different researches	K3 & K4
CO4	Acquire knowledge about the basic principles of various electroanalytical techniques such as polarography, amperometry and to study the importance of potentiometric, conductometric and complexometric titration	K2 & K4
CO5	Get better understanding of principles, instrumentation and applications of various elemental analysis, surface analysis techniques which will be employed in current research nano projects	K2 & K3

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	М	М	S	S
CO2	М	М	S	S	S	М
CO3	М	М	М	М	S	М
CO4	М	S	S	S	S	М
CO5	М	S	S	S	М	S

UNIT-I: Quantum Chemistry-I

12 hours

Black body radiation – Planck's quantum theory – Wave particle duality – Uncertainty Principle. Operators-linear, commutation, Hermitian and Hamiltonian operators – Eigen functions and Eigen values-Postulates of quantum mechanics – Derivation of Schrodinger's time-independent wave equation and its application to particle in a one dimensional box – particle in a three dimensional box, harmonic oscillator, rigid rotor and hydrogen atom.

UNIT-II: Quantum Chemistry-II

12 hours

Born-Oppenheimer approximation-Hydrogen molecule ion – LCAO-MO and VB treatments of the hydrogen molecule – Antisymmetry and Pauli's exclusion principle. Slater detrimental wave function, term symbols and spectroscopic states – Russell Saunders coupling.

The variation theorem and Perturbation theory. Applications of variation method and perturbation theory to helium atom. Hybridization – determination of bond angles of sp, sp^2 and sp^3 hybridizations – Huckel pi electron (HMO) theory and its applications to ethylene, butadiene and benzene – A brief idea of Hartree and Hartree-Fock self consistent field theory.

UNIT III: Rotational and Vibrational Spectroscopy 12 hours

Microwave spectroscopy – Theory – selection rules – Instrumentation; Energy levels in atoms and molecules – Fourier transformation Rotational spectra of diatomic and polyatomic molecules – P,Q,R branches – effect of isotopic substitution. Non – rigid rotator – Linear molecules. Theory of Rotational Raman spectra.

Vibrational spectra of diatomic molecules – selection rules – overtones, combination and hot bands - Fermi resonance Energy of diatomic molecule – simple harmonic and unharmonic oscillator, rotational character of vibration spectra – Theory of Vibrational Raman spectroscopy-Coherant – Antistokes Raman Spectroscopy (CARS).

UNIT-IV: Spectro and Electroanalytical Techniques

12 hours

X-ray Photoelectron Spectroscopy (XPS), Atomic absorption Spectroscopy (AAS),

Atomic emission spectroscopy (AES) – Principles, theory, instrumentation and applications – interpretation of spectra – Merits and demerits – Coloumetry – Polarography – theory, apparatus, DME – Diffusion, Kinetic and catalytic currents – Current – voltage curves for reversible and irreversible system – qualitative and quantitative applications to inorganic system.

Amperometric titrations – theory, apparatus, types of titration curves, successive titration and indicator electrodes – Applications. Cyclic voltametry – theory, application to inorganic systems. Potentiometric, conductomertric and complexometric titrations – Masking and demasking agents

UNIT V: Surface and Thermal Analysis Techniques 12 hours

Principles, theory, instrumentation and applications of Scanning Electron Microscopy (SEM), Scanning Tunneling Microscopy (STM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX), Atomic Force Microscopy (AFM), Electron Spectroscopy for Chemical Analysis (ESCA)– interpretation of spectra – Merits and demerits.

Principles, theory and applications of Thermo Gravimetric Analysis, DTA, DSC, DTG. Interpretation of various thermal analysis curves.

Distribution of hours: Theory-70%; Problems-30%

S.No	Authors	Title	Publishers	Year of
				publication
1	P W Atkins	Molecular Quantum	Oxford University	1983
		Mechanics	Press, Oxford	
2	M. W. Hanna,	Mechanics in	W. A Benjamin Inc.	1965
	Quantum	Chemistry	London	
3	I N Lovino	Quantum Chemistry	Allyn and	1983
	I. IN. LEVIIIE		Bacon,Boston	
4	H Evring I Walter	Quantum	John Wiley and Sons,	1944
	and G. Kimball	Chemistry,	New York,	
	and O. Kinibali,	Quantum Chemistry		
5	M W Hanna	Mechanics in	W.A. Benjamin Inc.	1965.
	IVI. VV. Hainia	Quantum Chemistry	London	
6	G. M. Barrow	Introduction to	McGraw Hill, New	1988.
		Molecular	York	
		Spectroscopy		
7	D. A. McQuarrie	Quantum Chemistry	University Science	1998.
			Books, MilValley,	

TEXT BOOKS

			California	
8	B. K. Sen.	Quantum Chemistry	Tata McGraw Hill	1992
9	A. K. Chandra	Introduction to Quantum Chemistry	Tata McGraw Hill	1997.
10	W. Levine	Quantum Chemistry	Prentice Hall	1994
11	R. K. Prasad	Quantum Chemistry	Wiley Eastern	1993
12	C. F. Banwell	Fundamentals of Molecular Spectroscopy	McGraw Hill, New York	1966
13	D. A. Skoog and D. M. West	Fundamentals of Analytical Chemistry	Holt Rinehart and Winston Publications, IV Edn	1982
14.	D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch	Fundamentals of Analytical Chemistry	Thomson Asia Pte Ltd., Singapore, 8 th Ed	2004
15.	D. A. Skoog	Principles of Instrumental Analysis	Saunders College Pub.Co, 3 rd Ed	1985
16.	Willard, Merit, Dean and Settle	Instrumental Methods of Analysis	CBS Publishers and Distributors, 4 th Ed	1989
17	G. D. Christian and J. E. O. Reilly	Instrumental Analysis	Allyn and Bacon Inc, 2^{nd} Ed	1986
18	R. S. Drago	Physical methods in chemistry	Reinhold, New York	1968
19	V. K. Ahluwalia	Reduction in Organic Synthesis	CRC Press, 1 st Ed	2012

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1.	G.D. Christian and J.E.G. Reily, Allegn	Instrumental Analysis	Becon II Edition	1986
2.	Wilson alld	Comprehensive Analytical Chemistry	Wilson series.	1986
3.	R.C. Kapoor and B.S. Aggarwal	Principles of Polarography	Wiley Easter Limited	1991
4.	Kolthoff and Elwing	Treatise on Analytical Chemistry		
5.	H.A. Strobel, Addison	Chemical Instrumentation	Wesley Publ. Co	1976

TEACHING METHODOLOGY:

- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

- 1. Dr.PN.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

ELECTIVE PAPER-A: MODERN SYNTHETIC STRATEGIES AND RENEWABLE ENERGY RESOURCES

Semester	Subject	Category		Instruction Hours					Credits
	Code		Le	ecture	T	heory		Practical	
			Per Week	Per Semester	Per Week	Per Semester	Per Week	Per Semester	
П		Elective	WEEK	Semester	WEEK	Semester	WCCK	Semester	
			3	45	3	45	0	0	3

COURSE OBJECTIVES:

- To understand the basic aspects of organic reactions in terms of acceptor, donor synthons, retrosynthetic analysis and various types of organic syntheses involved in accessing natural products.
- To understand the mechanism, synthetic utility of transition metal catalyzed organic reactions, concept of asymmetric synthesis, various types of total synthesis involved in natural products, advantages of green reactions and their utility.

COURSE OUTCOMES:

CO Number	CO statement	Knowledge level
CO1	Use retrosynthetic method for the logical dissection of complex organic molecules and devise synthetic methods	K3 & K2
CO2	Learn various organic reactions and reagents used in them as tools applied in the art of organic synthesis	K3 & K2
CO3	Gain knowledge about structural elucidation of steroids, synthesis of various natural products	K2 & K4
CO4	Learn the importance of minimizing waste, saving power and doing organic synthesis according to the principles of green chemistry	K2 & K3
CO5	Acquire knowledge about the applications of various types of renewable energy sources and biofuel cells	K3 & K4

> On the successful completion of course, students will be able to

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	М	М	S	S
CO2	М	М	S	S	S	М
CO3	М	М	М	М	S	М
CO4	М	S	S	S	S	М
CO5	М	S	S	S	М	М

UNIT-I: Synthetic Methodolgy

Synthons (acceptor and donor) – Synthetic equivalent – Target molecule – Retrosynthetic analysis –Functional group interconversion – Disconnection approach – One group disconnection – Disconnection of alcohols, olefins and ketones – Logical and illogical disconnections, Two group disconnection – 1,2 - 1,3 - 1,4 - 1,5 – and 1,6 – deoxygenated skeletons and dicarbonyls – Umpolung, antithesis, 1,3 – Dipolar cycloaddition methodologies (Azide, nitrile oxide, azomethine ylides and carbonyl ylides) – Concept of Tandem, cascade and domino reactions in organic synthesis – Various types of cyclization and ring formation reaction – anionic, cationic, radical and transition metal mediated cyclizations.

UNIT-II: Novel Reagents and Asymmetric Synthesis

9 hours

9 hours

Protection and deprotection of functional groups (R-OH, R-CHO, RCOR, R-NH₂ and R-COOH – Role of palladium and nickel catalysts in organic reactions including Pd(0), Ni(0), Pd(II) and Ni(II) complexes – Typical reactions involving Heck, Negishi, Suzuki – Miyaura, Kumada, Sonogashira, Stille and Hiyama coupling for carbon-carbon bond formation reactions – Buchwald – Hartwig coupling for the carbon – heteroatom bond formation reactions.

Selectivity – Resolution – Kinetic resolution reactions – Desymmetrization – Asymmetric induction – Chiral auxiliary – Generation of Asymmetric synthesis – Substrate – Auxiliary – Reagent and Catalyst control. Auxiliary controlled alkylation of chiral enolates – Evans oxazolidones, chiral hydrazones and chiral imines – Enders RAMP/SAMP and chiral sulfoxide – Asymmetric oxidation [dihydroxylation, epoxidation Sharpless, Jacobsen, Shi] and Asymmetric reduction (Noyori, Corey, Pfaltz) – Boranes reduction.

UNIT-III: Steroids and Total Synthesis of Natural Products

Structural elucidation of cholesterol, stigmasterol and ergosterol – synthesis of cholesterol – conversion of cholesterol to progesterone, oestrone and testosterone-Biosynthesis of cholesterol and bile acids.

Classification of Organic Synthesis. Demonstration of various types of total syntheses using alkaloid (Epibatidine and Ibogamine), Prostaglandin (PGE₁) and Terpenes (longifolene and cedrene). Total synthesis of quinine, morphine, reserpine, cocaine and papaverine

UNIT-IV: Essentials of Green Chemsitry

Introduction to green chemistry-definition, origin, history, needs, goals, twelve principles of green chemistry – Usage of Conventional and Green solvents-Advantages, Limitations and drawbacks – Green Synthesis – Designing, Choice of starting materials, choice of reagents, choice of catalysts – biocatalysts, polymer supported catalysts – choice of solvents – Synthesis involving basic principles of green chemistry – Examples: synthesis of adipic acid, methyl methacrylate, paracetamol – Microwave, Ultrasonication and Ultrasound assisted reactions – esterification, reduction and coupling reactions.

UNIT-V: Renewable Energy Resources

Renewable energy sources – types of renewable energy sources – Solar cells – basic principles, types and their applications – Fuel cells – basic principles, types and their applications. Working principle and applications of Biofuel cells – brief introduction about hydroelectric, biomass, wind power and geothermal power and their applications and limitations – energy from some other natural source.

Distribution of hours: Theory-100%; Problems-Nil

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1	Jiro Tsuji	Palladium Reagents	Wiley & Sons	1995
		and Catalysts		
2	M. B. Smith and Jerry	Advanced Organic	John Wiley & Sons,	2001
	March	Chemistry	5 th Ed	
3	W. Carruthers	Some Modern	Cambridge	1998
		Methods of Organic	University Press, 3 rd	
		Synthesis	Ed, Reprint	

9 hours

9 hours

9 hours

4	R. O. C. Norman and J. M. Coxon	Principles of Organic Synthesis	Chapman & Hall, 3 rd Ed	1993
5	Louis S. Hegedus	Transition Metals in the Synthesis of Complex Organic Molecules	University Science Books, 2 nd Ed	1999
6	L. Brandsma, S. F. Vasilevsky and H. D. Verkruijsse	ApplicationsofTransitionMetalCatalysts in OrganicSynthesis	Springer-Verlag	1999
7	R. E. Gawley & J Aube	Principles of Asymmetric Synthesis	Elsevier, 2 nd Ed	2012
8	Noyori, R	Asymmetric Catalysis in Organic synthesis	Wiley	2001
9	I. L. Finar, t	Organic Chemistry Vol 2, Stereochemistry and the Chemistry of Natural Produc	Dorling Kindersley India (P) Ltd	2009
10	Corey and Cheng	The Logics of Chemical Synthesis	John Wiley & Sons	1989
11	K.C. Nicolau and Sorenson	Classics in Total Synthesis	Wiley	1996
12	P. T. Anastas and T. C. Williamson	Frontiers in Benign Chemical Syntheses and Processes, Green Chemistry	Oxford University Press, Oxford	1998
13	V. K. Ahluwalia	MethodsandReagents ofGreenChemistry:AnIntroductionbyGreenChemistry	Kluwer Academic Publisher & Anamaya Publishers	2004
14.	R. A, Sheldon, I. Arends and Ulf. Hanefeld	Green Chemistry and Catalysis	John Wiley & Sons	2007
15.	Gadi Rothenberg	Catalysis: Concepts and Green Applications	John Wiley & Sons	2015

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1	W. Carruther and Jain	Modern Methods of	Cambridge University	2015
	Coldham	organic synthesis	Press, 4th edition	
2.	Micheal B. Smith	Organic Syntheis	McGraw Hill, 2 nd	2002
			edition	
3.	Stuart Warren	organic synthesis,	John Wiley and sons	2008
		the disconnection	(Asia) Pvt. Ltd.	
		approach		
4.	R.E. Ireland	Organic synthesis	Prentice hall of India,	1975
			Pvt. Ltd New Delhi	
5.	V.K. Ahluwalia	Green Chemistry:	CRC press	2008
		Environmentally		
		Benign Reactions		

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

ELECTIVE PAPER-B: PHARMACEUTICAL CHEMISTRY

Semester	Subject	Category		Instruction Hours					
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
II		Elective	3	45	3	45	0	0	3

COURSE OBJECTIVES:

- ✤ To study about the drug metabolism and effect of various drugs.
- To enhance the knowledge in the various areas of molecular modelling, molecular docking, drug design techniques with detail concepts of all the mentioned areas.

COURSE OUTCOME:

> On completion of the course, the student should be able to:

СО	CO statement	Knowledge
Number		level
CO1	Acquire knowledge on the importance of drugs, drug administration, drug	K2 & K3
	metabolism, elimination and discuss the challenges faced in each step of the	
	drug discovery process.	
CO2	Get knowledge about the industrial methods using for drug preparation and	K3 & K4
	formulation.	
CO3	Understand the pharmaceutical industry regulation for manufacturing,	K3 & K4
	packing and marketing.	
CO4	Gain knowledge about important drugs and its adverse effects.	K2 & K3
CO5	Acquire knowledge about anaesthetics, antihistamines and organic	K3 & K4
	pharmaceuticals.	

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MALING			JONES			
COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	S	М	М	М
CO2	М	S	М	М	S	М
CO3	М	S	S	S	S	М
CO4	М	S	S	М	S	М
CO5	М	М	S	S	М	S

MAPPING WITH PROGRAM OUTCOMES

UNIT - I: Classification of Drugs

Classification of drugs based on sources - mode of administration - site of action, absorption of drugs - Drugs distribution and elimination - Role of kidney in elimination.

Drug design- Development of new drugs - procedures followed in drug design, concepts of prodrugs and soft drugs.

UNIT - II : Industrial Aspects - I

Unit operation – Principle – extraction - maceration and percolation method – Drying: Tray dryer and drum dryer – Evaporation - Climing film evaporators and calandria – Distillation - Fractional distillation and bubble cap column steam distillation – Centrifugation - Supercentrifugation and non-perforated basket – Filtration: filter press and drum filter – Comminution - mortar and pestle type and Bal mills - types of formulation - Importance of it – factors affecting formulation - finished pharmaceuticals - packing materials - polymers, plastics and metals – closures - repacking.

UNIT - III : Industrial Aspects –II

Regulations - pharmacopeia - Good manufacturing practices (GMP) – Material Management- Laboratory controls- Validations- Drug analysis - aspirin, paracetamol and ciprofloxacin.

UNIT - IV : Effect of Drugs

Adverse responses and side effects of drugs, allergy - Drugs intolerance - Drug addiction, drug abuses and their biological effects.

Anticancer drugs: Anticancer drugs and their mechanism of action-

Natural and man made radioisotopes and their applications.

Antipsychotic drugs- the neuroleptics, antidepressant, butyrophenones, serendipity and drug development.

UNIT - V : Anaesthetics, Antihistamines And Organic Pharmaceuticals 9 hours

Anaesthetics - General and local - gaseous anaesthetics - ether and vinyl ether - halogenated hydrocarbons like chloroform - intravenous anesthetics - thiopentalsodium and cocaine - Antiseptics and disinfectants – Phenols and related compounds - formaldehyde and ethanol.

Antihistamines – classification H1 and H2 receptor antagonists.

Organic Pharmaceuticals – their role as preservatives and food additives.

Distribution of Marks: Theory-100%

9 hours

9 hours

9 hours

9 hours

TEXT BOOKS

S.No	Authors	Title	Publishers	Year of
				publication
1.	Foye, Williams O	Principles of Medicinal	Wolters kluwer,	1996
		Chemistry, 7 th edition	lippincoatt	
			Williams and	
			vikkins	
2.	G.R Chatwal	Synthetic Drugs	Himalaya	2009
			Publisher	
3.	Dr. Jayashree	A Textbook of	S. Chand and	2014
	Gosh, S. Chand	Pharmaceutical Chemistry	company	
			limited	
4.	A. O Bentley	Textbook of	Oxford Univ.,	1925
		Pharmaceutical Chemistry	Press.	
5.	M.N Chatterje	Text book of Medical	Jaypee Brothers	2012
	and Rana shinde	Biochemistry, 8 th edition	pub	
6.	A. Berger	Medicinal Chemistry, Vol	Wiley	1990
		1 &2	Interscience,	
			New York	
7.	Asutoshkar	Medicinal Chemistry	Wiley Eastern	1992
			Ltd., Chennai	
8.	Bentely and	Textbook of	Oxford Univ.	1985
	Driver's	Pharmaceutical Chemistry	Press.	

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1.	Asuthosh Kar,	Medicinal Chemistry,	New Age,	2005
		Revised, 3 rd edition	International	
			Publishers	
2	G.R. Chatwal,	Pharmaceutical Chemistry	Himalaya Pub	2008
	Madhu Arrora	organic		
3.	H.J Roth, A.	Pharmaceutical Chemistry	Ellis horwood	2001
	Kleemann	: vol.1 Drug synthesis	Ltd.	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos

SYLLABUS DESIGNERS:

1. Dr.P.N.Sudha, Principal, Department of Chemistry

2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry

3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry

4.Dr.S.Sashikala, Assistant Professor, Department of Chemistry

5.Dr.N.Dhanam, Assistant Professor, Department of Chemistry

6.Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry

- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry

9.Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
II		Elective	3	45	3	45	0	0	3

ELECTIVE PAPER-C: HETEROCYCLIC CHEMISTRY

COURSE OBJECTIVES

- ✤ To study about the chemistry of heterocyclic compounds.
- To enhance the knowledge strategies for designing the chemical synthesis for higher heterocycles.

COURSE OUTCOME

> On completion of the course, the student should be able to:

СО	CO statement	Knowledge
Number		level
CO1	Gain knowledge about aromatic compounds and aromatic heterocyclic compounds.	K2 & K3
CO2	Get knowledge about strain, bond angle strain, torsional strain and their consequences in small ring heterocycles and conformations of six membered heterocycles.	K3 & K4
CO3	Understand about the three membered, four membered and five membered heterocyclics.	K3 & K4
CO4	Acquire knowledge about mesoionic heterocyclics.	K2 & K3
CO5	Gain knowledge about higher heterocyclic compounds	K3 & K4

* CO-Course Outcomes

Knowledge level K1-Remember; K2-Understand; K3-Apply; K4-Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	М	М	М
CO2	М	S	М	S	S	М
CO3	М	S	S	S	S	М
CO4	М	S	S	М	S	М
CO5	М	М	М	S	S	S

UNIT I: Nomenclature of Heterocycles

Introduction - nomenclature systems - systematic nomenclature system (Hantzsch – Widman system) and replacement nomenclature system for monocyclic, fused, spiro and bridged heterocycles - Aromatic heterocycles – Introduction - chemical behavior of aromatic heterocycles - classification (structural types) - Criteria of aromaticity in heterocycles (bond lengths, dipole moments, empirical resonance energy, delocalization energy, Dewar resonance energy, chemical shits and ¹HNMR spectra).

UNIT- II: Nonaromatic Heterocycles

Introduction - strain, bond angle strain - torsional strain and their consequences in small ring heterocycles - conformations of six membered heterocycles – molecular geometry - barriers to ring inversion - pyramidal inversion and 1,3 - diaxial interactions. Stereoelectronic effect in saturated six membered heterocycles- anomeric effect - other related effects and attractive interactions through space.

UNIT III: Small Ring Heterocycles

Three membered and four membered heterocycles - Synthesis and reactions of aziridines, oxiranes, thiranes, azetidines, oxetanes and thietanes - Benzo- fused five membered heterocycles: Synthesis and reactions including medicinal applications of benzopyrroles, benzofurans and benzothiophenes.

UNIT- IV: Meso - Ionic Heterocycles

General classification - chemistry of some important meso-ionic heterocycles of type A and B and their applications - Six membered heterocycles with one heteroatom - Synthesis and reactions of pyrylium salts and pyrones and their comparisons with pyridinium and thiopyrylium salts and pyridines

UNIT-V: Higher Heterocycles

Six membered heterocycles with two or more heteroatoms Synthesis and reactions of diazines. triazines and tetrazines - Seven and large membered heterocycles - Synthesis and reactions of azepines, oxepines, thiepines and diazepines - Synthesis of five and six membered heterocycles with P, As, Sb and Bi.

Distribution of Marks: Theory-100%

9 hours

9 hours

9 hours

9 hours

9 hours

TEXT BOOKS:

S.No	Authors	Title	Publishers	Year of
				publication
1.	Gupta, M. Kumar and	Heterocyclic	Vol. 1 Spinger	1998
	V.Gupta	Chemistry	Verlag -3, R. R	
2.	T. Eicher and S.	The Chemistry	First Edition,	2003
	Hauptmann, Thieme	of Heterocycles		
3.	J. A. Joule, K. Mills and G.	Heterocyclic	London, New York :	1995
	F. Smith, Chapman and	Chemistry	Chapman & Hall	
	Hall		-	
4.	T. L. Gilchrist	Heterocyclic	Longman Scientific	2017
		Chemistry	Technical	
5.	G. R. Newkome and	Contemporary	Wily –inter Science.	1982
	W.W. Paudler	Heterocyclic		
		Chemistry		

REFERENCES BOOKS:

S.No	Authors	Title	Publishers	Year of
				publication
1.	R. M. Acheson, John	An Introduction to the	Interscience	1960
	wiely.	Heterocyclic Compounds	Publishers	
2.	A. R. Katrizky and	Comprehensive	Pergamon	1996
	C.W. Rees, eds	Heterocyclic Chemistry	press,Elsevier	
			Science, Ltd	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos

- 1. Dr.P.N. Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4.Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5.Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6.Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9.Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					
	Code		Lecture Theory						
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Π		Core	0	0	0	0	5	75	5

II SEMSTER ORGANIC CHEMISTRY PRACTICALS –I

COURSE OBJECTIVES:

Students should be able to apply principles of separation and isolation techniques in organic reactions and also to synthesize some important organic molecules.

COURSE OUTCOME:

At the end of the course, the students should be able to separate the organic mixtures using separating funnel and purity of components can checked by measuring their melting point/boiling point

Identification of components in a two-component mixture and preparation of their derivatives. Determination of b.p. / m.p. for the components.

Any Six preparation form the following

- (i) Preparation of o-benzyl benzoic acid
- (ii) p-Nitrobenzoic acid from p-nitrotoluene
- (iii) Anthraquinone from anthracene
- (iv) Benzhydrol from Benzophenone
- (v) m-Nitroaniline from m-dinitrobenzene
- (vi) 1,2,3,4 Tetrahydrocarbazole from phenyl hydrazine
- (vii) p-chlorotoluene form p-toluidine
- (viii) 2,3 Dimethylindole from phenyl hydrazine and 2 butanone (boiling acetic acid)
- (ix) Methyl orange from sulphanilic acid

REFERENCE BOOKS:

- 1. Organic Chemistry Laboratory Manual, Dr. M. S. Gnanaprakasam, Visvanathan Pvt., Ltd.,
- 2. A text book of Practical Organic Chemistry by Arthur I.Vogel
- 3. Laboratory Manual of Organic Chemistry Raj K. Bansal, Wiley Eastern limited.

TEACHING METHODOLOGY:

- Board and chalk
- Demonstration
- Conducting practicals
- Conducting Viva

- 1. Dr. P.N. Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					
	Code		Lecture Theory		Practical				
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Π		Core	0	0	0	0	5	75	5

INORGANIC CHEMISTRY PRACTICALS – I

COURSE OBJECTIVES:

The students should be able to apply the principles of qualitative and quantitative analytical techniques (semi micro) in inorganic chemistry for compound identification by group separation and to prepare different metallic coordination complexes.

COURSE OUTCOMES:

At the end of the course, the students should be able to plan and conduct experiments for identifying inorganic compounds and preparing the coordination complexes

UNIT - I

Semimicro qualitative analysis of mixture containing two common and two less familiar cations.

The following are the less familiar cations to be included. W, Ti, Te, Se, Ce, Zr, V, Li, Mo.

UNIT - II

- a) Colorimetric experiments Estimation of Fe, Ni, Cu and Mn.
- b) Preparation of the following (any 5):
 - (i) Potassium tris(oxalato)aluminate (III) trihydrate
 - (ii) Tris (thiourea)copper (I) chloride
 - (iii) Potassium tris(oxalato)chromate (III) trihydrate
 - (iv) Sodium dithiosulphatocuprate (I)
 - (v) Tris(thiourea)copper (I) sulphate
 - (vi) Tetrammine copper(II)sulphate

REFERENCE BOOKS

- 1. Textbook of quantitative Analysis, A. Vogel, CBS Pub.,
- 2. Quantitative Inorganic Analysis, Upadhyaya, S. Chand & Co., Ltd.,
- 3. Advanced Practical Chemistry, Chatterjee, Books & Allied (P) Ltd

TEACHING METHODOLOGY:

- Board and chalk
- Demonstration
- Conducting practicals
- Conducting Viva

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category	Instruction Hours				Credits		
	Code		Lecture		Theory		Practical		
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
Π		Core	0	0	0	0	5	75	5

PHYSICAL CHEMISTRY PRACTICALS - I

COURSE OBJECTIVES:

The students should be able to validate the conceptual understanding acquired from the theory classes

COURSE OUTCOMES:

At the end of the course, the students should be able to explain the principle behind the experiments performed in the laboratory plan and perform experiments and interpret experimental results

Experiments for Physical Chemistry Practical – I

- 1. Study of the kinetics of acid catalysed hydrolysis of ester and determine the relative strength of acids
- 2. Determination of the temperature coefficient and Arrhenius activation energy and frequency factor for the acid catalysed hydrolysis of ester
- 3. Study the iodination of acetone cataysed by acids.
- 4. Study of the kinetics of reaction between potassium iodide and persulphate and determination of the rate constant of primary salt effect
- 5. Study of the kinetics of reaction between KI and $K_2S_2O_8$ and determination of the order
- 6. Study of the phase diagram for a simple binary system
- 7. Study of the adsorption of oxalic acid by charcoal [Fruendlich isotherm]
- 8. Determination of the distribution coefficient of iodine between CCl₄ and water (Demo)
- 9. Determination of the equilibrium constant for the reaction between potassium iodide and iodine by partition method (Demo).
- 10. Determination of the concentration of the given unknown potassium iodide solution using partition method (Demo).
- 11. Study the inversion of cane sugar in the presence of acid using Polarimeter

TEACHING METHODOLOGY:

• Board and chalk

- Demonstration
- Conducting Experiments
- Conducting Viva

- 1. Dr.P.N.Sudha, Principal, Department of Chemistry
- 2. Dr.M.Nagarathinam, Head & Associate Professor, Department of Chemistry
- 3. Dr.S.Santha Lakshmi, Assistant Professor, Department of Chemistry
- 4. Dr.S.Sashikala, Assistant Professor, Department of Chemistry
- 5. Dr.N.Dhanam, Assistant Professor, Department of Chemistry
- 6. Dr. K. Vijayalakshmi, Assistant Professor, Department of Chemistry
- 7. Dr. T. Gomathi, Assistant Professor, Department of Chemistry
- 8. Mrs. J. Saranya, Assistant Professor, Department of Chemistry
- 9. Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

SCHEME OF VALUATION FOR PRACTICAL EXAMINATIONS ORGANIC CHEMISTRY PRACTICALS-I

Organic practicals	- Max. Marks: 60
Record	- 10
Qualitative organic analysis	- 30
Preparation	- 10 (Quality – 3 & Quantity- 7)
Viva	- 10
	60
Qualitative Organic Analysis	: 30
Pilot Separation	- 4
Aliphatic/Aromatic	- 2+2
Saturated/Unsaturated	- 2+2
Elements (N, X & S)	- 3+3
Functional Group tests	- 2+2
Confirmatory	- 2+2
Derivative	- 2+2

SCHEME OF VALUATION FOR PRACTICAL EXAMINATIONS INORGANIC CHEMISTRY PRACTICALS – I

Inorganic Practical	: Max. Marks :60
Record	- 10
Colorimetry	- 10 (Experiment-7+ Procedure-3)
Preparation	- 10 (Quality-3+ Quantity- 7)
Qualitative Analysis	- 20 (Each radical – 5)
Viva	- 10
	60

Calorimetry:

Result: 7 Marks

Instrument	Marks		
% error			
5%	7		
7%	5		
10%	4		
12%	3		
Above 12%	2		

SCHEME OF VALUATION FOR PRACTICAL EXAMINATIONS PHYSICAL CHEMISTRY PRACTICALS-I

Maximum marks :60

Record	-	10
Manipulation	-	20
Practical	-	20
Viva voce	-	10
		60

Practical: For all experiments

Calculation	: 5 marks
Graph	: 7 marks

Result

Error up to 5%: 8 marks 6 to 10%: 5 marks > 10% : 3 marks
QUESTION PAPER PATTERN

Section-A (5 Questions x 6 marks = 30 marks)

 Questions in Section-A will contain 10 questions in "Either Or" pattern drawn from 5 units (two questions from each unit in either or pattern)

Section-B (3 Questions x 15 Marks = 45 Marks)

Questions in Section-B will contain 5 questions of open choice drawn from 5 units (One question from each unit)

Semester	Subject	Category		Instruction Hours					Credits
	Code		L	ecture	Т	heory		Practical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
III		Core	4	60	4	60	0	0	4

PAPER – VII: NUCLEAR CHEMISTRY AND ORGANOMETALLIC CHEMISTRY

COURSE OBJECTIVES:

- To learn basic principles of nuclear chemistry, various nuclear reactions as energy sources, working functions of nuclear reactors and applications of tracers in different fields.
- To gain knowledge about different types of organometallic complexes and their activity as an effective catalyst.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
CO1	Understand nuclear properties and its reactions with	K3 & K4
	mechanisms.	
CO2	Categorize the radioactive decay and mode of working nature	K2 & K3
	of nuclear reactors.	
CO3	Gain knowledge of organometallic chemistry, EAN rule and	K2 & K3
	its applications.	
CO4	Get clear knowledge about the carbon donors, metallocenes	K3 & K4
	and various reactions in organometallic chemistry.	
CO5	Identify the bonding aspects of simple organometallic	K3 & K4
	compounds, different types of organometallic reactions and to	
	explain different catalytic reactions.	

*CO-Course Outcomes

Knowledge level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	S	М	S	М
CO2	S	М	S	S	S	М
CO3	М	S	М	S	М	S
CO4	М	М	S	М	S	М
CO5	М	S	S	М	S	S

Nuclear Structure : Mass and Charge, nuclear moments, nuclear forces, nuclear stability - magic numbers, binding energy, mass defects (simple problems) and packing fraction. Nuclear isomerism - internal conversion - nucleus models - salient features of liquid drop and shell models of the nucleus.

Nuclear Reaction : Types of reactions, cross section, Q-value and threshold energy – compound nucleus theory – high energy nuclear reactions – types of nuclear fission and fusion reactions, photonuclear and thermonuclear reactions, mechanism of hydrogen burning and carbon burning reactions.

UNIT-II: Nuclear Chemistry – II

Radioactive Decay : Mode of radioactive decay, rate, half life and average life. Radioactive equilibrium - transient and secular nuclear reactions. Tracer techniques - isotope dilution analysis and neutron activation analysis – carbon and rock dating – application of tracers in chemical analysis, pharmacology, agriculture and industry.

Nuclear reactors - detection and determination of radioactivity by Wilson's cloud chamber, bubble chamber, Geiger Muller counters, scintillation counters, cherenkov counters, fast breeder reactors, particle accelerators, linear accelerators, cyclotron and synchrotron.

UNIT-III: Organometallic Chemistry - I

Introduction to organometallic chemistry - classification of ligands - stability of orgaometallic complexes by 18e- rule and EAN rules – bonding in organometallic compounds -metal-carbon ionic bonding, metal-carbon sigma bonding, metal-carbon multiple bonding and factors providing stability to metal-carbon bond. Metal alkenyl complexes – Zeise's salt, metal allyl complexes and metal acetylene complexes.

Synthesis, structure, bonding in metal carbonyls, metal carbonyl hydrides, metal carbonyl halides and metal nitrosyls. Bonding modes of metal cyanide, metal isocyanide, metal phosphine, cyclopentadiene, cyclobutadiene, benzene, cycloheptatrienyl and cyclooctatetraene (cot) ligands.

UNIT-IV: Organometallic Chemistry – II

Metallocenes – synthesis, types of metallocenes, role of n5 Cyclopentadienyl ring, n6 arene metal complexes - half sandwich complexes - structure and bonding of ferrocene, dibenzene chromium - Important types of reactions of organometallic compounds association, substitution, addition, elimination, ligand protonation, electrophilic and nucleophilic attack on ligands, carbonylation, decarbonylation, oxidative addition and reductive elimination - Template synthesis of macrocyclic ligands - fluxional properties reactivity of cyclopentane rings of metallocene activity of dioxygen, dinitrogen, dihydrogen.

12 hours

12 hours

UNIT-V: Organometallic Chemistry – III

12 hours

General principles of catalysis – conditions for metal to act as catalyst – basic reactions involved in the catalysis by organometallic compounds – Tolman catalytic loops – catalytic mechanism in the following reactions: hydrogenation of olefins (Wilkinson's catalyst) – hydroformylation of olefins using Cobalt or Rhodium catalysts (Oxo process) – oxidation of olefins to aldehydes and ketones (Wacker process) – Cyclooligomerisation of acetylene using Ni catalyst (Reppe's catalyst) – Synthetic gasoline by using ZSM-5 catalyst (Fischer-Tropsch and mobil process) polymerization of olefins (Zeigler – Natta Catalyst) – polymer bound catalyst.

Distribution of hours: Theory – 80%; Problems – 20%

TEXT BOOKS

S.No	Authors Title		Publishers	Year of
				publication
1.	Vasishta Bhatt	Essentials of Coordination	Elsevier	2016
		Chemistry		
2.	R. K. Sharma	Textbook of Coordiantion	Discovery	2007
		Chemistry	Publishing House	
3.	James E. Huheey,	Inorganic Chemistry :	4 th Edition,	2009
	Ellen A. Keiter,	Principles of Structure and	Dorling	
	Richard A. Keiter,	Reactivity	Kindersley	
	Okhil A. Medhi			
4.	R. Gopalan, V.	Concise Coordination	VIKAS publishing	2001
	Ramalingam	Chemistry	house pvt ltd	
5.	H. J. Arniker	Essentials of Nuclear	New Age	2005
		Chemistry	International	
6.	S. F. A. Kettle	Coordination compounds	Nelson & ELBS	1979
7.	K. F. Purcell and J. C.	Inorganic Chemistry	WB Sanders Co,	1977
	Kotz		USA	
8.	D. F. Shriver, P. W.	Inorganic Chemistry	Oxford University	1990
	Atkins and C. H.		Press	
	Longford			
9.	R. B. Heslop and K.	Inorganic Chemistry	Elsevier	1976
	Jones			
10.	G. Friedlander, J. W.	Nuclear and	Wiley eastern Co.,	1964
	Kennedy and J. M.	Radiochemistry		
	Miller			
11	R. C. Mehrothra, A.	Organometallic Chemistry	Wiley eastern Co.,	1992
	Singh			

REFERENCE BOOKS

S.No Authors Title Publishers Year of
--

				publication
1.	Peter A C Mcpherson	Principles of Nuclear Chemistry	World Scientific	2017
2.	Maheshwar Sharon	Nuclear Chemistry	Ane Books	2009
	and Madhurai Sharon			
3.	Smiljko Asperger	Chemical Kinetics and	2 nd Edition,	2003
		Inorganic Reactions Mechanisms	Springer	
4	Shirver and Atkins	Inorganic Chemistry	5 th Edition, Oxford	2010
5	Walter D. Joyaland	Modern Nuclear	Wiley costern Co	2017
5	David I Morrissev	chemistry	whey eastern Co.,	2017
	Glen T. Seaborg	enemistry		
6	Gregory Choppin,	Radiochemistry and	4 th Edition,	2013
	Jan-Olov Liljenzin,	Nuclear Chemistry	Elsevier	
	Jan Rydberg,			
	Christian Ekberg			
7	G. Coates, M. L.	Principles of	Methven co.,	1988
_	Green and K. Wade	Organometallic Chemistry		
8	P. Powell	Principles of	Chappman and Hall	1988
		Organometallic Chemistry		2005
9	G. S. Manku	Theoretical Principles of	McGraw-Hill	2006
10		Inorganic Chemistry	Education	10(7
10	F. Basolo and K.G.	Rectanism of Inorganic	wiley eastern Co.,	1967
11	M Sataka and V	An Introduction to	Discovery	2003
11	Mido	Nuclear Chemistry	publishing house	2003
12	S F A Kettle	Physical Inorganic	Oxford University	1998
12	S. I. M. Rettle	Chemistry: A	Press	1770
		Coordination Chemistry		
		Approach		
13	R. C.Mehrotra and A.	Organometallic Chemistry	2 nd Edition, New	2004
	Singh	: A Unified Approach	Age International	
			Private ltd	
14	W. Parkins and R. C.	An Introduction to	Macmillan	1986
	Poller	Organometallic Chemistry		

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Mrs. J. Saranya, Assistant Professor, Department of Chemistry

PAPER – VIII: SPECTROSCOPY AND APPLICATIONS

Semester	Subject	Category		Instruction Hours					Credits
	Code		L	ecture	Т	heory	Pr	actical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
III		Core	4	60	4	60	0	0	4

COURSE OBJECTIVES:

- To learn the principles and applications of UV, IR, NMR and Mass Spectral data in structural elucidation of organic compounds.
- To understand the structure and bonding nature of inorganic compounds using FTIR, NMR, ESR and Mössbauer spectroscopy

COURSE OUTCOMES:

> On the successful completion of course, the students will be able to

CO Number	CO statement	Knowledge level
CO1	Gain knowledge about the basic principles and structural	K2 & K4
	elucidation of organic and inorganic compounds by UV and	
	IR spectra.	
CO2	Understand basic principles and applications of NMR spectra	K2 & K4
	to simple organic and inorganic compounds.	
CO3	Identify the structure of organic and inorganic molecules by	K3 & K4
	understanding the principles and applications of ¹³ C NMR, ¹⁹ F	
	NMR and ³¹ P NMR spectra.	
CO4	Understand the basic principles of mass spectrometry and its	K2 &K3
	applications in the molecular mass and structural	
	determination of organic compounds.	
CO5	Acquire knowledge about the principles and applications off	K2 & K4
	ESR and Mossbauer spectroscopy	

*CO-Course Outcomes

Knowledge level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	М	S	S	М
CO2	М	М	S	М	S	S
CO3	М	S	S	М	S	М
CO4	S	S	М	S	М	М
CO5	М	М	S	S	М	М

Electronic absorption: Beer-Lamberts law - Selection rules - Franck-Condon principle - Types of electronic excitation - effect of conjugation and solvent - Chromophore and Auxochrome – Bathochromic and Hypsochromic shift – Types of bands – Applications in organic structural determination – Woodward-Fieser rule for conjugated systems and α , β unsaturated carbonyl compounds - Scott rules for aromatic ketones - Applications of ORD studies – octant rule and axial haloketone rule.

Infrared Spectra: Identification of functional groups in Organic Compounds - Finger print region - Inter and Intramolecular hydrogen bonding - Various factors affecting IR stretching frequencies – Interpretation of Infrared spectra.

Inorganic compounds - effect of coordination on the stretching frequency of the following complexes – sulphato, sulphito, carbonato, NO₃⁻ ion, NO₂⁻ ion, thiocyanato, cyano, PR₃, AsR₃, halogen and aqua complexes – M-M bonds – bond angles from relative intensities. **UNIT – II: Nuclear Magnetic Resonance and their applications**

12 hours

Origin of NMR spectrum – nuclear spin states – NMR active nuclei (¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR) – ¹H NMR – chemical shift, standards in NMR, shielding and deshielding, factors affecting chemical shift – spin-spin coupling – low and high resolution spectra – splitting origin and rules – coupling constant - factors affecting coupling constant – variation of coupling constant with dihedral angle (Karplus curve) – simplification of complex spectra using shift reagents - Two interacting nuclei: AB, AX and AA'BB' - dd - pair of doublet and AB quartet - Three interacting nuclei: AMX, ABX and ABC systems (only pattern is required).

Dynamic NMR of DMF, cyclohexane and iodocyclohexane – double irradiation / spin decoupling – nuclear overhauser effect – proton NMR applications to structural elucidation of simple organic molecules.

UNIT – III: ¹³C NMR, ¹⁹F NMR and ³¹P NMR Techniques 12 hours

¹³C NMR – proton decoupled and off resonance of ¹³C NMR spectra – factors affecting 13 C chemical shift – homonuclear and heteronuclear coupling – origin of 13 C satellite peaks – Attached Proton Test (APT) and Distortionless Enhancement by Polarization Transfer (DEPT) spectrum (DEPT-45, DEPT-90 and DEPT-135).

¹⁹F NMR – Precessional frequency and heteronuclear coupling – Identification of organofluoro compounds – CF₃CO₂Et and CF₃CH₂OH and equimolar mixture of $[TiF_6]^{2-}$ and TiF₄ in ethanol, ClF₃, BrF₅ using NMR.

³¹P NMR – Chemical shift and heteronuclear coupling – Identification of organo phosphorous compounds such as (Me)₃P, (EtO)₃P=O, P₄S₃, H₃PO₃, H₃PO₂, HPF₂, Ph₃P and

UNIT – IV: ESR and Mossbauer Spectroscopy

ESR spectroscopy: Introduction – presentation of ESR spectra – g and A parameters – spin densities – evaluation of spin – orbit coupling – Mc-Connel relationship – factors affecting the magnitude of g and A – Zero field splitting – Kramer's degeneracy – ESR spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II) complexes, bis(salicylaldimine)copper(II), $[Co_3(CO)_9Se]$, $[(NH_3)_5Co-O_2-Co(NH_3)_5]^{5+}$ – Mn²⁺ and vanadyl complexes – Applications of EPR based on number of signals multiplicity, anisotropy and bio-inorganic molecules.

Mossbauer spectroscopy: Introduction – principle – instrumentation – recoil energy – Doppler effect – number of MB signals – experimental technique of measuring resonance absorption – isomer shift – quadrupole splitting – magnetic hyperfine splitting – applications to ⁵⁷Fe, ¹¹⁹Sn and ¹²⁹I compounds – Mossbauer spectra – problems

UNIT – V: Mass Spectrometry

12 hours

Origin, basics and block diagram of Mass spectrum – Various types of Ionization techniques (EI, CI, FD, FAB, SIMS) – Stability of molecular ions, metastable ions, base peaks and isotope peaks – Fragmentation patterns of organic molecules – benzenes, phenyl halides, phenols, benzyl alcohols, benzyl halides, aliphatic alcohols, aliphatic and aromatic aldehydes, ketones, acids, esters, amides, aliphatic / aromatic nitro and amine compounds and heterocyclic compounds (furan, pyrrole and pyridine only) – McLafferty rearrangements of organic molecules – Retro Diels – Alder fragmentation – Identification of organic compounds using mass spectrometry – problems.

Distribution of hours: Theory – 80%; Problems – 20%

TEXT BOOKS

S. No	Authors	Title	Publishers	Year of publication
1	William Kemp	Organic Spectroscopy	3 rd Edition, Palgrave	2017
2	P. S. Kalsi	Spectroscopy of Organic	6 th Edition, New Age	2017
		Compounds	International	
			Publishers	
3	R. S. Drago	Physical Methods in	Affiliated East-West	2012
		Inorganic Chemistry	Press Pvt. Ltd., New	
			Delhi	
4	Y.R. Sharma	Elementary Organic	S. Chand & Co	2007
		Spectroscopy : Principles		
		and Chemical Applications		
5	H. Kaur	Spectroscopy	Pragati Prakasan	2006
			Publications, Meerut,	
1				

REFERENCE BOOKS

S.	Authors	Title	Publishers	Year of
No				publication
1.	J. Dyer	Application of Absorption	Prentice and Hall of	
		Spectroscopy of Organic	India, Pvt., New Delhi	
		Compounds		
2	P. J. Wheatley	The Determination of	2 nd edition, Dover	1981
		Molecular Structure	Publications, Mineola	
3	E. A. V. Ebsworth,	Structural Methods in	3 rd Ed ELBS, Great	1987
		Inorganic Chemistry,	Britain	
4	C. N. Banwell	Fundamentlas of Molecular	4 th edition, McGraw	1994
		Spectroscopy	Hill Education, Noida	
5	L. D.S.Yadav	Organic Spectroscopy	Springer	2005
6	Donald L. Pavia,	Introduction to Spectroscopy	4 th Edition, Brooks	2009
	Gary M.			
	Lampman, George			
	S. Kriz, James R			
	Vyvyan			
7	Harald Gunther	NMR Spectroscopy : Basic	Wiley	2013
		Principles, Concepts and		
		Applications in Chemistry		
8	R. M. Silverstein,	Spectrometric Identification	John Wiley	1991
	G. C. Bassler and	of Organic Compounds		
	T. C. Morrill			
9	R. S. Macomber	A Complete Introduction to	John Wiley	1998
		NMR Spectroscopy		
10	Jag Mohan	Organic Spectroscopy	Alpha Science	2004
		Principles and Applications	International Ltd	

TEACHING METHODOLOGY:

- PowerPoint presentation
- Models
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Dr. T. Gomathi, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					Credits
	Code		Le	ecture	Т	heory	Pr	actical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
III		Core	4	60	4	60	0	0	4

PAPER – IX: THERMODYNAMICS AND GROUP THEORY

COURSE OBJECTIVES

- To learn the principles of activity and fugacity, theories of kinetic activity, various applications of Quantum statistics, techniques of heat capacity.
- To learn the concepts of group theory, determining vibrations, hybrid orbitals, selection rules for spectral transitions.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO	CO statement	Knowledge
Number		level
CO1	Acquire knowledge of classical thermodynamics in the evaluation of	K2 & K3
	macroscopic properties and the principles of fugacity and activity.	
CO2	Gain knowledge on Nernst heat theorem, third law of	K3 & K2
	thermodynamics, theories of kinetic activity and to understand the	
	techniques of heat capacity.	
CO3	Gain knowledge about the basic principles of statistical	K3 &K4
	thermodynamics and various applications of quantum statistics	
CO4	Acquire knowledge about the basic concepts of group theory and to	K2 &K4
	construct the character tables	
CO5	Get better understanding how to apply group theory for determining	K3 &K4
	vibrations and hybrid orbitals and to determine the selection rules for	
	spectral transitions, energies and molecular orbitals.	

*CO – Course Outcomes

Knowledge level K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	М	S
CO2	S	М	S	М	S	М
CO3	М	S	М	S	S	М
CO4	S	М	S	М	S	S
CO5	М	S	М	S	М	S

UNIT - I: Thermodynamics and Non-Ideal Systems

12 Hours

Concepts of partial molar properties – partial molar free energy – partial molar volume and partial molar heat content – Gibbs-Duhem equation – chemical potential – variation of chemical potential with temperature and pressure – Van't Hoff isotherm – fugacity – determination of fugacity of gases by graphical method – variation of fugacity with temperature and pressure – Lewis Randall rule – Duhem-Margules equation – Thermodynamics of real solutions – activity and activity coefficient of non-electrolytes and electrolytes – standard states – determination of activity and activity coefficient of non-electrolyte – EMF method and cryoscopic method – Excess functions.

UNIT – II : Irreversible Thermodynamics

Nernst heat theorem – Third law of thermodynamics – applications of third law – Entropy change – calculation of absolute entropies – apparent exceptions to third law – Nonequilibrium thermodynamics – basic concepts – forces and fluxes – Entropy of irreversible processes – Entropy production – Clausius inequality – Phenomenological equations – Onsager reciprocity relations – Coupled reaction sm – Principle of microscopic reversibility – Onsager reciprocal relations – Verification – Entropy production – rate of entropy production – entropy production in chemical reactions.

UNIT – III : Statistical Thermodynamics

Objectives of statistical thermodynamics – Concept of distributions – Types of ensembles – Thermodynamic probability – Most probable distribution Law – Classical statistics – Maxwell-Boltzmann (MB) statistics – Quantum statistics – Bose-Einstein (BE) and Fermi-Dirac (FD) statistics – Derivation of distribution function – MB, BE and FD statistics – comparison – Partition functions – Separation of partition functions.

Translational, rotational, vibrational and electronic partition function – relation between partition function and thermodynamic quantities – Equipartition theorem – Debye and Einstein heat capacity of solids.

UNIT – IV: Group Theory – I

Symmetry elements and operations, point groups and Schoenflies symbols – Determination of point group – Groups and classes of symmetry operations – Matrix representation of symmetry operations – Similarity transformations – reducible and irreducible representations – Symbols and rules of irreducible representations – Reduction formula – Direct product representation – Great orthogonality theorem – Group multiplication table for C_{2v} , C_{3v} and C_{2h} – character table – construction of character table for C_{2v} and C_{3v} groups.

UNIT- V: Group Theory- II

Applications of group theory – Determination of representations of vibrational modes in non-linear molecules (H_2O , NH_3 , BF_3 and CH_4) – Determination of Hybrid orbitals in nonlinear molecules – Examples: NH_3 , BF_3 , CH_4 , SF_6 and XeF_4 – Symmetry selection rules of infra-red and Raman spectra – application of group theory for the electronic spectra of formaldehyde and ethylene.

12 Hours

12 Hours

12 Hours

12 Hours

Distribution of hours: Theory -80%; Problems -20%

TEXT BOOKS

S. No	Authors	Title	Publishers	Year of
1.	P. W. Atkins	Physical Chemistry	Oxford University Press, Oxford	1990
2.	D. A. McQuarrie	Textbook of Physical Chemistry	University Science Books, Mill Valley	1983
3.	R. A. Alberty and R. J. Silbey	Physical Chemistry	John Wiley and Sons, New York	1992
4.	V. Ramakrishnan and M. S. Gopinathan	Group Theory in Chemistry	Vishal Publications	1988
5.	J. Rajaram and J.C. Kuriacose	Thermodynamics for Students of Chemistry	Lal Nagin Chand, New Delhi	1971
6.	F. A. Cotton	Chemical Application of Group Theory	John Wiley and Sons, New York	1971
7.	K. V. Raman	Group Theory and its Applications to Chemistry	Tata McGraw-Hill Publishing Company	1990
8.	J. Rajaram and J. C. Kuriacose	Irreversible Thermodynamics	Lal Nagin Chand, New Delhi	1989
9.	S. Glasstone	Thermodynamics for Chemists	Affiliated East West Press, New Delhi	1960
10.	R. P. H. Gasser and W. G. Richards	Introduction to Statistical Thermodynamics	World Scientific, Singapore	1995

REFERENCE BOOKS

S. No.	Authors	Title	Publishers	Year of publication
1.	Philip Reid and	Thermodynamics, Statistical	Pearson	2007
	Thomas Engel	Thermodynamics & Kinetics		
2.	Yi-Chen Cheng	Macroscopic and Statistical	World Scientific,	2006
		Thermodynamics	Singapore	
3.	M.C. Gupta	Statistical Thermodynamics	New Age	2007
			International	
4.	P. Reid and T.	Physical Chemistry	Pearson	2013
	Engel			
5.	B. N. Roy	Fundamentals of Classical and	Wiley	2012
		Statistical Thermodynamics		
6.	J. N. Gurtu and A.	Advanced Physical Chemistry	Pragathi Prakashan,	2014
	Gurtu		Meerut	
7.	G. M. Barrow	Physical Chemistry	Tata McGraw Hill,	2011
			New York	
8.	P. K. Bhattacharya	Group Theory and its	Himalaya	2010
		Applications	Publishers	
9.	A. Salahuddin and	Group Theory and its	PHI learning	2015

	G. Krishnan	Applications		
10.	S. Swarnalakshmi, T. Saroja and R. M. Ezhilarasi,	A Simple Approach to Group Theory in Chemistry	University press (India) private Ltd	2008

TEACHING METHODOLOGY:

- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					
	Code		L	ecture	Т	heory	Pr	actical	
			Per Week	Per Semester	Per Week	Per Semester	Per Week	Per Semester	
III		Elective-III	3	45	3	45	0	0	3

ELECTIVE PAPER - III A: MATERIAL CHEMISTRY

COURSE OBJECTIVES:

- To provide basic knowledge of materials science, so that the students would be able to understand and distinguish between variety of materials based on their structure and properties
- To develop understanding the characteristics of the biomaterials and to make them aware of the growing applications and possibilities of materials to enhance the quality of life.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
CO1	Learn about biomaterials, classifications, their properties,	K3 & K2
	performance specification and biological applications.	
CO2	Understand and appreciate the importance of the polymers as	K3 & K2
	an important class of material and its characterisation.	
CO3	Gain knowledge about ceramics and bioceramic, its	K2 &K4
	structural importance for industrial applications.	
CO4	Impart basic knowledge about the manufacturing techniques	K2 &K3
	of various materials.	
CO5	Know about the industrially important polymers and their	K3 &K4
	properties.	

*CO – Course Outcomes

Knowledge level: K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	S
CO2	S	М	S	S	S	S
CO3	М	М	S	М	S	М
CO4	S	S	S	S	S	S
CO5	М	S	S	S	М	М

UNIT – I: Biomaterials

9 hours

Definition of biomaterials, requirements and classification of biomaterials – Metals and non-metallic alloys, Polymers, Ceramics, glasses, Bio-resorbable and biodegradable materials, Bio-derived macromolecules and fibers.

Standard and assessments of biomaterials – surface properties of materials, physical properties of materials and mechanical properties.

Biocompatibility – introduction to the biological environment – material response: swelling and leaching – corrosion and dissolution – deformation and failure – friction and wear – host response – the inflammatory process – coagulation and hemolysis approaches to thrombo- resistant materials development.

Metallic biomaterials : titanium and titanium based alloys – stainless steel – Co-Cr alloys.

UNIT-II: Polymers

9 hours

9 hours

Classification of polymers – copolymers, tacticity, geometrical isomerism, molecular weight distribution and averages – measurement of molecular weight – synthesis of polymers – step-growth polymerization, chain-growth polymerization and polymerisation techniques .

Polymer conformation and chain dimensions – Freely oriented perpendicular chains – Gaussian model – amorphous state – glass transition temperature T_g – the crystalline state – ordering of polymer chains – crystalline melting temperature (T_m) – techniques to determine crystallinity T_c – Determination of T_g – Relationship between T_m and T_g – Mechanical properties – Introduction to viscoelasticity – dynamic mechanical analysis – mechanical models of viscoelastic behaviour – Boltzmann superposition principle – Introduction to rubber elasticity.

UNIT – III: Ceramics

Ceramics : Introduction to ceramic materials – Classification of ceramics – Crystal structure and bonding of common advanced ceramic materials – Mechanical behaviour of ceramics – Types of ceramics – oxide and non-oxide ceramics – Allotropes of carbon – graphite, diamond and fullerene – preparation and characterisation of ceramics powders.

Classification of bioceramic materials – Alumina and zirconia in surgical implants and their coatings – Bioactive glasses and glass ceramics with their clinical applications – Photochromic and photosensitive glasses – Synthesis and characteristics of dense and porous hydroxyapatite and calcium phosphate ceramics – Resorbable bioceramics – Characterisation of ceramics and bio-ceramics – Applications of ceramics in advanced technologies.

UNIT – IV: Processing of Materials

9 hours

Polymer Processing : Plastics elastomers and fibres – Compounding processing techniques – calendaring, die casting, rotational casting, film casting, injection moulding, blow moulding, extrusion moulding, thermoforming, foaming, reinforcing and fibre spinning.

 $\label{eq:ceramic processing} Ceramic \ processing : Pressing - CIP - HIP - slurry \ processing, \ slip \ casting, \ pressure$

casting, tape casting, gel casting, rapid prototyping, electrophoretic deposition, electrospinning – Sol-gel processing – Thermal and plasma spraying – Thick and thin film coatings PVD and CVD techniques.

UNIT- V: Commercial Important Materials

Polyethylene – polyvinyl chloride – polyamides – polyurethanes – polyesters – polytetrafluoro ethylene (Teflon) – Nafian and ion-exchange resins – Functional polymers – Fire-retarding polymers and electrically conducting polymers – Biopolymers: starch, cellulose and chitosin derivatives.

Carbon nanotubes – Graphene – Fullerenes – Composites: metal matrix, polymer matrix and ceramic matrix – Different biomaterials: Orthopaedic materials, cardiovascular materials, dental materials and ophthalmic materials.

Distribution of hours: Theory – 100%

TEXT BOOKS

S.	Authors	Title	Publishers	Year of
No				publication
1.	K. L. Choy	Process Principles and	World Scientific	2002
		Applications of Novel and	Publishing, Singapore	
		Cost-effective ESAVD		
		Based methods		
2.	A. Jones and M.	Nanotechnology-	Evolution Capital Ltd.	2001
	Mitchell	Commercial Opportunity	London,	
3.	G. Schmid	Nanoparticles	Wiley-VCH	2004
4.	V. R. Gowariker,	Polymer Chemistry	New Age International	2005
	N. V. Viswanathan		(P) Ltd,	
	and Jayadev			
	Sreedhar			
5.	G. Odian	Principles of	Wiley-Inter science	2004
		Polymerization		
6.	L. H. Sperling	Introduction to Physical	Wiley-Inter science	1986
		Polymer Science		
7.	Sujata V Bhat	Biomaterials	2nd ed, Narosa	2010
			Publishing House, New	
			Delhi	
8.	J. B. Park, J. D.	Biomaterials- Principles	CRC press	2002
	Bronzino	and Applications		

REFERENCE BOOKS

S.	Authors	Title	Publishers	Year of
No				publication
1	M. Rubinstein and	Polymer Physics	Oxford University	2003
	R. A. Colby		Press	
2.	T. Pradeep	Nano: The Essentials	Tata McGraw Hill	2007
3.	M. Arumugam	Materials Science	Anuradha Agencies,	2006

			Kumbakonam	
4	Fredrick H. Silver	Biomaterials Medical	Chapman and Hall	2003
		Devices and Tissue		
		Engineering		
5	N. Ghista	Biomechanics of Medical Devices	Macel Dekker	1982
6	R. Alcock and F.	Contemporary Polymer	Prentice Hall	1981
	W. Lamber	Chemistry		
7	R. J. Young and P.	Introduction to Polymers	Chapman and Hall	2002
	A. Lovell			
8	Larry L Hench,	Biomaterials, Artificial	Woodhead	2005
	Julian R Jones	Organs and Tissue	Publications,	
		Engineering	Cambridge	
9	Joon Park and R.	Biomaterials: An	3rd Edition, Springer	2007
	S. Lakes	Introduction		
10	F. W. Billmeyer	Textbook of Polymer	John Wiley & Sons,	1984
		Science	New York	
11	M. Arumugam	Engineering Physics	Anuradha Agencies,	2003
			Kumbakonam	
12	F. W. Billmeyer	Textbook of Polymer	John Wiley & Sons,	2003
		Science	New York	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Mrs. J. Saranya, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					Credits
	Code		Le	ecture	Т	heory	Pr	actical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
III		Elective- III	3	45	3	45	0	0	3

ELECTIVE PAPER – III B: BASIC PHARMACOLOGY

COURSE OBJECTIVES:

- To study the basic principles and history of drugs, metabolism and adverse effect of various drugs.
- To learn about anticancer drugs, use of bioassays, screening and manufacturing factors of dugs.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
CO1	Understand the types and properties of drugs	K3 & K2
CO2	Gain knowledge about the adverse effects of drugs	K3 & K2
CO3	Gain knowledge about the bioassays and anticancer drugs	K2 &K4
CO4	Acquire knowledge about various methods of screening effects	K2 &K3
CO5	Understand the Principles of pharmacopeia and manufacturing practices of drugs	K3 &K4

*CO – Course Outcomes

Knowledge level K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	S	М	S	S
CO2	М	М	S	М	S	М
CO3	S	S	М	М	М	S
CO4	М	S	S	М	S	М
CO5	М	S	S	S	М	М

UNIT – I : Principles and Classification of Drugs

9 hours

History of development of Pharmacology – introduction – general principles of route of drug administration – pharmacokinetics – absorption – distribution – metabolism – excretion – pharmacodynamics – general mechanism of drug action – Classification of drugs based on sources - mode of administration – site of action – absorption of drugs – Drugs distribution and elimination – Role of kidney in elimination.

UNIT-II: Adverse effect of Drugs

Elementary introduction to adverse drug reactions – drug interactions – drug allergy – adverse responses and side effects of drugs – drugs intolerance – Drug addiction – drug abuses and their biological effects - toxicity - general concepts - acute - subacute - chronic toxicity tests - teratogenicity - carcinogenicity - iatrogenic diseases - Lethal Dose 50 - Effective Dose 50 - tolerance - habituation.

UNIT – III: Anticancer drugs and Bioassays 9 hours

Anticancer drugs: General introduction of anticancer drugs - mechanism of action -Natural and man-made radioisotopes and their applications

Bioassays: General principles – general methods – biological variations – animal ethics - Bioassays of insulin - heparin - d-tubocurarin - digitalis - acetylcholine adrenaline - histamine.

UNIT-IV: Screening of Drugs

General principles of screening of drugs - general screening methods - clinical trial -Screening methods for evaluation of anti-inflammatory – analgesics – antipyretics – antiulcer, anticonvulsants - hepatoprotective - antidiabetic - diuretic and drugs acting on CNS.

UNIT –V: Industrial Aspects

Regulations - pharmacopeia - Good manufacturing practices (GMP) - risk and importance of GMP - Guidelines of GMP - ten Principles of GMP - design and construct the facilities and equipments – procedures and instructions – document work – validate work - monitor facilities and equipment - operating procedure - design develop and demonstrate job competence - protect against contamination - control component and product related processes - conduct planned and periodic audits - current GMP in manufacturing process and its importance – drug analysis – aspirin – paracetamol and ciprofloxacin.

Distribution of hours: Theory – 90%; Problems – 10%

TEXT BOOKS

S.No.	Authors	Title	Publishers	Year of
				publication
1.	Goodman &	The Pharmacological Basis of	13 th Edition,	2017
	Gillman	Therapeutics	McGraw Hill	
			Companies, New	
			York, USA,	
2.	Jayashree Gosh	A Textbook of	S. Chand Pub.,	2012
		Pharmaceutical Chemistry		
3.	G. R. Chatwal	Pharmaceutical Chemistry	Himalaya Pub.,	2010
4.	Bentley	Textbook of Pharmaceutical	Oxford Univ., Press.	2006
		Chemistry		

9 hours

9 hours

5.	Chatterje	Textbook of Medical	Jaypee Brothers pub.	2001
		Biochemistry		

REFERENCE BOOKS

S.	Authors	Title	Publishers	Year of
No				publication
1	Katzung G.	Basic and Clinical	McGraw Hill	2001
	Bertram	Pharmacology	Companies, New	
			York, USA	
2	Dipak K. Sarker	Quality System and Control	John wiley & sons	2000
		for Pharmaceutics	Ltd.	
3	Donald Cairns	Essentials of Pharmaceutical	4 th Edition,	2012
		Chemistry	Pharmaceutical	
			Press	
4	H. Beckett, J. B.	Practical Pharmaceutical	4 th Edition, The	1988
	Stenlake	Chemistry	Athlone Press	
5	Camille Georges	The Practice of Medicinal	4 th Edition, Elsiver	2015
	Wermuth, David	Chemistry		
	Aldous, Pierre			
	Raboisson, Didier			
	Rognan			
6	Charles Dickson	Experiments in	2 nd Edition, CRC	2014
		Pharmaceutical Chemistry	Press	
7	Rang H. P., Dale	Pharmacology	Churchill	1999
	M. M., Ritter J. M.		livingstone, New	
			York	
8	R. S. Satoskar	Pharmacology and	16 th Edition,	1999
		Pharmacotherapeutics	Mumbai Popular	
			Prakashan	
9	Munson L. Paul,.	Principles of Pharmacology,	Chapman & Hill, N.	1995
			Y.	
10	S. K. Kulkarni &	Introduction to Pharmacology	5 th Edition, Vallabh	1998
	P. C. Dandiya		Prakasha,	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Mrs. J. Saranya, Assistant Professor, Department of Chemistry

ELECTIVE PAPER – IIIC: INDUSTRIAL CHEMISTRY

Semester Subject Category Instruction Hours Credits					
	Semester	Subject	Category	Instruction Hours	Credits

	Code		L	ecture	Т	heory	Pr	actical	
			Per Week	Per Semester	Per Week	Per Semester	Per Week	Per Semester	
III		Elective- III	3	45	3	45	0	0	3

COURSE OBJECTIVES:

- ✤ To learn about Fuels, corrosion, Paints and Pigments
- ✤ To study the Resins, Plastics and Liquid Fuels.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
CO1	Understand the classification of fuels and calorific value	K3 & K2
CO2	Gain knowledge about the mechanism of electrochemical	K3 & K2
	corrosion, galvanic corrosion.	
CO3	Gain knowledge about the constituents, manufacture,	K2 &K4
	functions, types of paint and pigments.	
CO4	Acquire knowledge about thermosetting resins and its types.	K2 &K3
CO5	Understand the liquid fuels and advantages of catalytic	K3 &K4
	cracking over thermal cracking.	

*CO – Course Outcomes

Knowledge level K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	Μ	S	М	S
CO2	S	М	S	М	S	М
CO3	S	S	М	S	М	S
CO4	М	М	S	S	М	М
CO5	S	S	М	М	S	М
UNIT-I: Fuels and Combustion					9 ho	urs

UNIT-I: Fuels and Combustion

Introduction - Classification of Fuels - Calorific Value - Theoretical Calculation of Calorific value of a fuel - gross calorific value and net calorific value - Characteristics of a Good fuels - Solid fuels - Wood - Coal - Classification of Coal by Rank - Selection of Coal – Analysis of Coal and its significance.

UNIT-II: Corrosion and its control

Introduction - Economic aspects of corrosion - Dry or Chemical Corrosion - Wet or electrochemical corrosion – Mechanism of Electrochemical Corrosion – Galvanic Corrosion – Concentration Cell Corrosion - Differential aeration corrosion - Pitting Corrosion -Underground or soil corrosion – Passivity.

UNIT-III: Paints and Pigments

9 hours

Paints: Classification of paints – Distempers – constituents of paints – setting of the paint – Requirements of a good paint – Emulsion paints – Latex paints – paint removers – Varnishes – Solvents and thinners.

Pigments – Introduction – Requirements of organic pigments - Types of Pigments – Applications.

UNIT – IV: Resins and Plastics

Important thermosetting resins – Phenol Formaldehyde Resin or Phenolic Resin – Amino Resins and Plastics – Epoxy Resins – Acrylic Resins and Plastics – Polyester resins – Silicone Resins – Silicone fluids – Silicone greases – Polyurethanes – Foamed or cellular plastics.

UNIT-V: Liquid Fuels

Liquid fuels – Petroleum cracking – Advantages of catalytic cracking over thermal cracking – Synthetic Petrol – Refining of Gasoline – Reforming – Knocking – Octane number of Gasoline – Diesel Engine Fuels – Diesel – Octane number of Diesel Oil – Diesel index.

Distribution of hours: Theory -100%

S.No.	Authors	Title	Publishers	Year of publication
1.	B. K. Sharma	Industrial Chemistry	Goel publishing house, Meerut	2003
2.	S. P. Mahajan	Pollution Control Process in Industries	Tata McGraw - Hill Publishing Company Ltd., New Delhi	2005
3.	C. K. Varshney	Water pollution and management	Wiley Eastern Ltd., Chennai - 20.	1995
4.	R. K. Das	Industrial Chemistry	Kalyani Publications, New Delhi	1982

TEXT BOOKS

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of publication
1	A. Ravikrishnan	Engineering Chemistry	Sri Krishna Publications	2006
2.	B. K Sharma	Industrial Chemistry	Goel Publications	2014
3.	B. K. Sharma	Fuels And Petroleum Processing	Krishan Prakashan	2014
4.	P. C. Jain and Monika Jain	Engineering Chemistry	Dhanpat Rai publishing company	2013
5.	N.	Engineering	Prentice Hall India Learning	2014

9 hours

Krishnamurthy	Chemistry	Private Limited	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

Dr. D. Shakila, Assistant Professor, Department of Chemistry

PAPER – X: PHOTOCHEMISTRY, HETEROCYCLES AND NATURAL

PRODUCTS

Semester	Subject	Category		Instruction Hours				Credits	
	Code		L	ecture	T	heory	Pra	actical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
IV		Core	6	90	6	90	0	0	4

COURSE OBJECTIVES:

To understand the organic photochemistry and pericyclic reactions, their mechanism and synthetic utility.

To understand the heterocycles, biosysnthesis and synthesis of natural products

COURSE OUTCOMES:

	On the successful	completion of course,	students will be able to
--	-------------------	-----------------------	--------------------------

CO Number	CO statement	Knowledge
		level
CO1	Acquire good foundation in reaction mechanisms involved in photochemistry.	K2 & K4
CO2	Get knowledge in pericyclic reactions and mechanisms in photochemical reactions.	K2 & K3
CO3	Learn the importance of synthesis and reactivity of five member and six membered heterocycles.	K2 & K4
CO4	Acquire the knowledge in the synthesis, reactions of higher heterocycles with two hetero atoms	K3 & K4
CO5	Get clear idea about the isolation, classification, structural elucidation and synthesis of terpenes and terpenoids.	K2 & K3

* CO – Course Outcomes

Knowledge level: K1– Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	М	S	М
CO2	S	М	S	М	S	М
CO3	S	S	М	S	М	М
CO4	М	М	S	М	S	S
CO5	S	S	М	S	М	М

UNIT – I: Organic Photochemistry

12 hours

Photochemistry of ketones – Norrish Type-I, Norrish type-II – Photoreduction – photochemistry of olefins – cis-trans isomerisation – Photocycloaddition – Paterno-Buchi reaction – photochemistry of aromatic compounds – photorearrangements – Di- π methane rearrangement – oxa and aza di- π methane rearrangements – Barton reaction and Photo-Fries

reaction – Photochemistry of cyclohexadienones – photochemistry of santonin – synthesis of Vitamin D.

UNIT–II: Pericyclic Reactions

Classification – orbital symmetry – Woodward Hoffmann rule – FMO analysis of electro cyclic – cycloaddition – sigmatropic reactions – hydrogen shift – carbon shift reactions. Correlation diagram method for cycloaddition reactions ($\pi^{2s}+\pi^{2s}$) – ($\pi^{4s}+\pi^{2s}$) – electrocyclic reactions – butadiene, cyclobutene system and interconversion of hexatriene to cyclohexadiene – Diels-Alder reaction, Ene reaction and dipolar cycloaddition reactions – Claisen and Cope reactions – degenerate Cope reaction – fluxional isomerism – semibullvalene and bullvalene – Synthetic applications of pericyclic reactions.

UNIT – III: Heterocycles - I

Nomenclature – Non-aromatic heterocyclic compounds – three – four – five – six member rings with one hetero atom (N, O, S) – structure – synthesis – reactions – physical and chemical properties – Aromatic heterocyclic compounds – five and six membered heterocyclic systems with one heteroatom – Pyrrole – Furan – Thiophene – Pyridine – Two heteroatoms – Pyrazole – Imidazole – Pyrimidine – Pyrazine – Benzo fused heterocyclic systems – Indole – Quinoline – Isoquinoline

UNIT - IV: Heterocycles - II

12 hours

12 hours

Six membered heterocycles with two or more hetero atoms: Synthesis and reactions of diazines, triazines and tetrazines.

Seven and large membered heterocycles: Synthesis and reactions of azepines, oxepines, thiepines and diazepines – Synthesis of five and six membered heterocycles with P, As, Sb and Bi.

UNIT – V: Chemistry of Terpenes and Terpenoids

Biosynthesis of acyclic and monocyclic terpenes from acetyl CoA – synthesis of *trans* chrysanthemic acid – biosynthesis of loganin and seco-loganin – asymmetric synthesis using limonene and menthol – chemical degradation – structure and synthesis of alpha-pinene and camphor – biosynthesis of sesquiterpenes – structure of transannular cyclisation and synthesis of caryophyllene

Terpenoids: Isolation and classification – general methods to elucidate the structure of terpenoids – structural elucidation of zingiberine, eudesmol, caryophyllene, abietic acid and santonin.

Distribution of hours: Theory - 90%; Problems - 10%

12 hours

TEXTBOOKS

S.	Authors	Title	Publishers	Year of
No				Publication
1.	J. A. Joule and K. Mills	Heterocyclic Chemistry	John Wiley, 5 th Ed	2010
2.	T. L. Gilchrist	Heterocyclic Chemistry	Dorling Kindersley India (P) Ltd, Third Impression	2008
3.	R. K. Bansal	Heterocyclic Chemistry	NewAgeInternational (P) Ltd,5th Ed	2014
4.	Charles A. Depuy and Orville L. Chapman, Englewood Cliffs	Molecular Reactions and Photochemistry	New Jersey: Prentice-Hall	1972
5.	Nicholas J Turro, V. Ramamurthy and J. C. Scaiano	ModernMolecularPhotochemistryforOrganic Molecules	University Science Books, 1 st Ed	2010
6.	Jagdamba Singh and Jaya Singh	Photochemistry and Pericyclic Reactions	New Age International (P) Ltd, 3 rd Ed	2012
7.	P. L. Gilchrist and R. C. Storr	Organic Reactions & Orbital Symmetry	Cambridge [Eng.] University Press	1972
8.	Sunil Kumar, Vinod Kumar and S. P. Singh	Pericyclic Reactions:A Mechanistic and Problem Solving Approach	Academic Press (Elsevier	2016
9.	S. Sankararaman	Pericyclic Reactions: A Textbook: Reactions, Applications	Wiley-VCH	2005
10.	Woodward and Hoffman	The Conservation of Orbital Symmetry Theory	Academic Press	1971

REFERENCE BOOKS

S.	Authors	Authors Title		Year of
No				Publication
1.	K. K. Rohatgi	Fundamentals of	New Age	2017
	Mukherjee	Photochemistry	International	
			Publishers	
2.	V. Ramamurthy	Organic Photochemistry	CRC Press	2019
3.	J. M. Coxon, B.	Organic Photochemistry	Cambridge India	2015
	Halton			
4.	K. C. Majumdar	Textbook of Pericyclic	Medtech Publishers	2015
		Reactions		
5.	Satyajit Dey	Pericyclic Reactions and	Techno World	2019
		Organic Photochemistry		
		Through Solved Problems		
6.	O.P. Agarwal	Chemistry of Natural	GOEL Publishing	2015
		Products	House	

7.	I.L. Finar,	Organic Chemistry,	Volume II, Pearson	2002
		Stereochemistry and	Education	
		Chemistry of Natural		
		Products		
8.	T. L. Gilchrist	Heterocyclic Chemistry	Longman Scientific	2017
			Technical	
9.	I. L. Finar	Organic Chemistry Vol 1 &	Dorling Kindersley	2009
		2	India (P) Ltd	
10.	Gurdeep Charwal	Chemistry of Natural	Himalaya	2018
		Products	Publishing House	

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNERS:

Dr. D. Shakila, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					Credits
	Code		L	ecture	Т	heory	Pr	actical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
IV		Elective	3	45	3	45	0	0	3

PAPER- IV:ELECTIVE PAPER A: SCIENTIFIC RESEARCH METHODOLOGY

COURSE OBJECTIVES:

- To study about the importance of research, literature survey, search engines and evaluation of analytical datas.
- ◆ To learn the scientific writing and publication of research articles.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge level
C01	Acquire good knowledge about the nature and importance of research	K2 & K4
CO2	Gain clear concepts of separation techniques	K2 & K3
CO3	Analyse the various error analysis and to evaluate the data	K3 & K4
CO4	Apply the statistical treatment of various tests	K3 & K4
CO5	Understand the conventions of thesis writing and paper publication	K3 & K4

* CO - Course Outcomes

Knowledge level K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	S	S
CO2	М	S	S	S	М	S
CO3	S	М	М	S	S	М
CO4	М	S	S	М	М	S
CO5	М	S	М	S	М	S

9 hours

UNIT-I: Meaning of Research, Literature and Search Engines

Nature and importance of research – aims, objective, principles and problems – selection of research problem – purpose of research – scientific methods – role of theory – characteristics of research – Types of research: fundamental or pure research – applied research – action research – historical research – experimental research.

Survey of scientific literature – primary and secondary sources – citation index for scientific papers and journals – patents.

ASAP Alerts, CA Alerts, SciFinder, Chem Port, Science Direct, Web of Science,

Scopus, STN International.

UNIT – II : Conduct of Research work

Physical properties useful in analysis and methods of separation prior to analysis – Isolation techniques – extraction – Soxhlet extraction, crystallization, sublimation – methods for vacuum sublimation and distillation under reduced pressure.

Chemistry of working with hazardous materials – acid / water sensitive – corrosive – toxic – explosive and radioactive materials.

UNIT – III : Evaluation of Analytical Data

Evaluation of analytical data – Precision and accuracy – Mean, Median, Range, Deviation – Arithmetic – Relative arithmetic – Standard – Relative standard – Variance – Error in chemical analysis – Absolute, Relative, determinate, random – Systematic – Instrumental, Methodic, Personal, Proportional, Constant errors – Histogram – statistical methods – Gaussian Curve – normal distribution curve – Poisson curve – Characterizing measurements and results – Detection limits.

UNIT – IV : Statistical Treatment of Analytical Data

Statistical treatment of finite samples – the students 't' test and F test – Criteria for rejection of an observation – Q test – significant figures and computation rules – data plotting – Correlation diagram – least square analysis – correlation and regression analysis – correlation coefficient – bar diagram.

UNIT – V: Scientific Writing

Scientific writings: Research reports – theses – journal articles and books.

Steps to publish a scientific article in a journal: Types of publications – communications – articles – reviews – when to publish – where to publish – specific format required for submission – organization of the material – Documenting: abstracts – indicative or descriptive abstract – informative abstract – footnotes – endnotes – referencing styles – bibliography – journal abbreviations.

Conventions of writing – the general format – page and chapter format – use of quotations and footnotes – preparation of tables and figures – referencing – appendices.

Distribution of hours: Theory – 80%; Problems – 20%

TEXT BOOKS

S.	Authors	Title	Publishers	Year of
No				Publication
1.	John W. Creswell	Research Design	International Student 4 th Edition	2013
2.	Arthur Vogel	Textbook of	ELBS Edition	1978

9 hours

9 hours

9 hours

		Quantitative Chemical		
		Analysis		
3.	J. Anderson, H. M.	Thesis and Assignment	Wiley Eastern Ltd	1970
	Durston and M. Poole	writing		
4.	Kothari	Research Methodology	Willey Eastern Pub	1985
5.	Donglas A. Skoog	Fundamental of	Halt Saundersons	1963
	and Donald, M. West	Analytical Chemistry	International Edition.	
6.	Y. K. Singh	Fundamental of	New Age International	2006
		Research Methodology	Pvt.Ltd	
		and Statistics		

REFERENCE BOOKS

S.No	Authors	Title	Publishers	Year of Publication
1.	C. R. Kothari	Research Methodology	New Age International Publisher	2020
2.	Ranjit Kumar	Research Methodology	Pearson India	2005
3.	R. Panneerselvam	Research Methodology	Prentice Hall India Learning Pvt. Ltd.	2011
4.	Deepak Chawla	Research Methodology concept and Cases	S. Chand & Company	2011
5.	Bhanwar Lal Garg	An Introduction to Research Methodology	RBSA Publisher	2015
6.	Y.K.Singh	Fundamentals of Research Methodology and Statistics	New Age International Pvt.Ltd	2006

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Dr. T. Gomathi, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					Credits
	Code		L	ecture	Т	heory	Pr	actical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
IV		Elective	3	45	3	45	0	0	3

PAPER – IV: ELECTIVE PAPER – B: SUPRAMOLECULAR CHEMISTRY

COURSE OBJECTIVES:

- Understanding the basic concepts and terminologies in Supramolecular Chemistry.
- ◆ To understand about the importance and applications of Supramolecular Chemistry.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge
		level
CO1	Gain better knowledge about the concepts and terminologies used	K2 & K4
	in supramolecular chemistry	
CO2	Apply principles and synthesis of molecular recognition	K2 & K3
CO3	Analyse the various error analysis and to evaluate the datas	K3 & K4
CO4	Gain clear ideas of supramolecules in nanoscience	K2 & K3
CO5	Learn the applications of supramolecular chemistry in various	K2 & K3
	aspects	

* CO – Course Outcomes

Knowledge level K1- Remember; K2 - Understand; K3 - Apply; K4 - Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	М	S	М
CO2	S	М	S	S	М	М
CO3	S	S	М	S	М	S
CO4	М	М	S	S	М	S
CO5	М	S	М	М	S	М

MAPPING WITH PROGRAM OUTCOMES

UNIT – I : Concepts of Supramolecular Chemistry

Terminology and definitions in supramolecular chemistry – Intermolecular forces – Ion pairing – ion-dipole and dipole-dipole interactions – hydrogen bonding – cation-pi – anion-pi – pi-pi interactions and Van-der-Waal forces – Solvent and solution properties – solvation and hydrophobic effect.

UNIT – II: Molecular Recognition

9 hours

Principle of molecular recognition – host-guest complementarity – preorganisation – chelate effect – cooperativity – Synthesis and applications of supramolecular host (crown ethers, lariat ethers, podands, cryptands, spherands, calix[n]arenes, cyclodextrin) as cation and anion binding receptors and receptors for ion-pair recognition.

UNIT – III: Supramolecular Reactivity and Catalysis

Organocatalysis mediated through hydrogen bonding – preconcentration – selfassembly of catalysts and preorganisation of catalyst – substrate systems – Influence of organisation (effective molarity) on catalysis, Catalytic acyl transfer – acid-base catalysis – catalysed hydrolysis of ATPase mimic.

UNIT - IV: Supramolecules in Nanoscience

Nano-capsules and containers – main synthetic strategies for their preparation (Examples of each type) – Potential uses of such assemblies as nano-reactors and for transport (e.g. drug-delivery) – Self-assembly of metal nanoparticles (via H-bonding and electrostatic forces) – Using the coordination bond to prepare large supramolecular assemblies – Cages, macrocycles and catenanes – Polymeric materials and grids

UNIT – V: Applications of Supramolecular Chemistry 9 hours

Rational Design – Molecular Paneling – Supramolecular reactivity and catalysis – Supramolecular devices – Nanoscience applications – Supramolecular Chemistry in Biology: Membranes – Macrocyclic systems – Photosynthesis – Oxygen transport – Biological mimics – Enzymes – Metallobiosites – Heame analogues.

Distribution of hours: Theory – 100%

S.	Authors	Title	Publishers	Year of
No				Publication
1.	P. A. Gale and J. W.	Supramolecular	John Wiley & Sons	2012
	Steed	Chemistry: From		
		Molecules to		
		Nanomaterials		
2.	F. Diederich, P. J.	Modern Supramolecular	John Wiley & Sons	2008
	Stang, R. T.	Chemistry		
	Tykwinski			
3.	J. W. Steed, D. R.	Core Concepts in	John Wiley & Sons	2007
	Turner,	Supramolecular		
	K. J. Wallace	Chemistry and		
		Nanochemistry		
4.	J. W. Steed and J. L.	Supramolecular	John Wiley & Sons 2 nd	2011
	Atwood	Chemistry	edition	
5.	J. M. Lehn, Wiley	Supramolecular	John Wiley & Sons	1995
	VCH,	Chemistry: Concepts		
	Weinheim	and Perspectives		

TEXT BOOKS

9 hours

6.	V. Balzani (Editor), L. De Cola, Kluwer, Dordrecht	Supramolecular Chemistry	John Wiley & Sons	1992
	Dorarcent			

REFERENCE BOOKS

S. No	Authors	Title	Publishers	Year of Publication
1.	H. Dodziuk	Introduction to	Kluwer Academic	2002
		Supramolecular	Publishers, The	
		Chemistry	Netherlands	
2.	Asim K. Das and	Introduction to	CBS Publisher	2017
	Mahua Das	Supramolecular		
		Chemistry		
3.	J. Lehn	Supramolecular	John Wiley	2014
		Chemistry: Concepts and		
		Perspectives		
4.	T. Kunitake, K Ariga,	Supramolecular	Springer-Verlag	2006
	Berlin	Chemistry –	Heidelberg	
		Fundamentals and		
		Applications.		
5.	P. S. Kalsi	Bioorganic, Bioinorganic	New Age	2017
		and Supramolecular	International	
		Chemistry	Publshers	
6.	D. John	Supramolecular and	Sarup Book	2019
		Cluster Chemistry		

TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussionSeminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

Semester	Subject	Category		Instruction Hours					Credits
	Code		Le	ecture	Т	heory		Practical	
			Per	Per	Per	Per	Per	Per	
			Week	Semester	Week	Semester	Week	Semester	
IV		Elective	3	45	3	45	0	0	3

PAPERIV: ELECTIVE PAPER- C: NANOSCIENCE AND TECHNOLOGY

COURSE OBJECTIVES:

- ◆ To understand preparation, characterization and synthesis of nanomaterials.
- To understand about the importance and applications of nanotechnology in various fields.

COURSE OUTCOMES:

> On the successful completion of course, students will be able to

CO Number	CO statement	Knowledge
		level
CO1	Learn about the synthesis and chemical process of nanoscience	K2 & K3
CO2	Apply principles and characterization of nanoscience by XRD, SEM, EDAX, TEM,	K3 & K4
CO3	Analyse the various application of nanotechnology in remediation of pollution	K3 & K4
CO4	Get knowledge about the tissue engineering and degradation of cell culture	K2 & K3
CO5	Gain clear knowledge about drug delivery and gene delivery systems	K2 & K3

* CO – Course Outcomes

Knowledge level K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

MAPPING WITH PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	М	S
CO2	М	S	М	S	S	М
CO3	S	М	М	М	S	S
CO4	М	S	М	S	М	М
CO5	М	S	М	S	М	S

UNIT-I: Synthesis of Nanomaterials Chemical Processes

9 hours

Chemical precipitation and co-precipitation, polyol – borohydride reduction methods – Sol-Gel synthesis; Microemulsions synthesis – Hydrothermal – Solvothermal synthesis methods – Microwave assisted synthesis – Sonochemical assisted synthesis – Core-Shell nanostructure – Organic – Inorganic hybrid nanocomposites – Quantum dot (QDs) synthesis.

UNIT – II: Nanostructured Materials Characterization Techniques 9 hours

X-ray diffraction (XRD) – SEM – EDAX – TEM – Elemental mapping – FTIR – UV-Visible spectrophotometer – Laser Raman Spectroscopy – Nanomechanical – Characterization using Nanoindentation – Differential Scanning Calorimeter (DSC) – Differential Thermal Analyzer (DTA) – Thermo gravimetric Analysis (TGA) – TEM – X-ray Photoelectron Spectroscopy (XPS) – Electrochemical Characterisation measurements.

UNIT – III: Nanotechnology - Environmental and Health Effects 9 hours

Environmental pollutants in air, water, soil, hazardous and toxic wastes – application of nanotechnology in remediation of pollution – The challenge to occupational health and hygiene – toxicity of nanoparticles – effects of inhaled nanosized particles – skin exposure to nanoparticles – impact of CNTs on respiratory systems – hazards and risks of exposure to nanoparticles – monitoring nanoparticles in workplace and sensors.

UNIT – IV: Tissue Engineering

9 hours

Introduction – Stem cells – Morphogenesis – Generation of tissue in the embryo – Tissue homeostasis – Cellular signaling – Extracellular matrix as a biologic scaffold for tissue engineering – Natural polymers in tissue engineering applications – Degradable polymers for tissue engineering – Degradation of bioceramics – Cell source – Cell culture: harvest – selection, expansion and differentiation – Cell nutrition – Cryobiology.

UNIT – V: Drug Delivery Systems and Fundamentals of Drug Nanoparticles 9 hours

Production – Size – Surface area – Suspension and Settling, Magnetic and Optical Properties, Biological Transport – Manufacturing of Nanoparticles: Ball-Milling – High-Pressure Homogenization – Spray-Drying Production in Nonaqueous Liquids – Hot-Melted Matrices – Pelletisation Techniques – Direct Compress – Delivery of Nanoparticles – Brain Delivery – Ocular Drug Delivery – Gene Delivery Systems – Carriers in Cancer Therapy – Cardiovascular System – Vascular Delivery to the Lungs – Targeting Lymphatics. **Distribution of hours: Theory – 100%**

S. No	Authors	Title		Publishers	Year of Publication
1.	Sanjay Mathur and	Nanostructured		Willey	2008
	Mrityunjay Singh	Materials	and		
		Nanotechnology-	II,		

TEXT BOOKS

		Eds.		
2.	Carl C. Koch	Nanostructured	Noyes Publications,	2002
		Materials	New York	
3.	G. A. Nazri and G.	Science and Technology	Kulwer Acdemic	2004
	Pistoia		Publishers, Dordrecht,	
			Netherlands	
4.	P. Brown and K.	Nanofibers and	Woodhead publication	2006
	Stevens	Nanotechnology in	London	
		Textiles		
5.	J. Altmann,	Military	Taylor and Francis	2006
	Routledge	Nanotechnology:	Group	
		Potential Applications		
		and Preventive Arms		
		Control		
6.	Jennifer Kuzma and	Nanotechnology in	Woodrow Wilson	2006
	Peter VerHage	Agriculture and Food	International Center	
		Production		
7.	D. Shi, B. Aktas. L.	Nanostructured	Springer	2002
	Pust, F. Mikailov	Magnetic Materials and	~	
		their Applications, Ed.		

REFERENCE BOOKS

S.	Authors	Title		Publishers	Year of
No					Publication
1.	К.	An Introduction	to	Prentice Hall	2009
	K. Chattopadhyay	Nanoscience	and	Learning Pvt. Ltd.	
	1 5 5	Nanotechnology			
2.	Charles P. Poole	An Introduction	to	Wiley-Interscience	2008
		Nanotechnology			
3.	Victor E. Borisenko	A Handbook	on	Wiley VCH	2008
		Nanoscience	and		
		Nanotechnology			
4.	T. Pradeep	A Textbook	of	McGraw Hill	2017
		Nanoscience	and	Education	
		Nanotechnology			
5.	B. K. Parthasarathy	Nanoscience	and	Isha books	2017
		Nanotechnology			
6.	B. S. Murthy	Textbook of Nanoscience		Springer	2013
	-	and Nanotechnology			
7.	Hari	Encyclopedia	of	American Scientific	2004
	Singh Nalwa	Nanoscience	and	Publishers	
		Nanotechnology			
TEACHING METHODOLOGY:

- Board and chalk
- PowerPoint presentation
- Group discussion
- Seminar and Assignments
- Animated videos
- Board and chalk

SYLLABUS DESIGNER:

Mrs. R. Bharathi Priyadharsini, Assistant Professor, Department of Chemistry

IV SEMESTER ORGANIC CHEMISTRY PRACTICAL - II (60 HOURS)

Any Six Preparations From The Following Involving Two Stages

- 1. sym-Tribromobenzene from aniline.
- 2. Benzanilide from benzophenone
- 3. m-Nitrobenzoic acid from methyl benzoate
- 4. 2,4 Dinitrobenzoic acid from p-nitrotoluene
- 5. m-Nitrobenzoic acid from methylbenzoate
- 6. Benzil from benzaldehyde
- 7. Anthraquinone from phthalic anhydride
- 8. Phthalide from phthalic anhydride
- 9. 2 Phenylindole from phenylhydrazine
- 10. 2, 4 dinitrophenyl hydrazine from p-nitrochlorobenzene

Any Two Exercises in the Extraction of Natural Products

(Need not to be given for examination)

- 1. Caffeine from tea leaves
- 2. Lactose from milk
- 3. Citric acid from lemon
- 4. Piperine from black pepper

Chromatographic Separations (Need not be given for examination)

- 1. Column chromatography separation of anthracene and picric acid from anthracene picrate.
- 2. Thin layer chromatography separation of green leaf pigments.
- 3. Paper chromatography-Identification of amino acids.

Any Five Estimation

- 1. Estimation of aniline
- 2. Estimation of phenol
- 3. Estimation of glucose
- 4. Estimation of amino group
- 5. Estimation of amide group
- 6. Saponification of fat or an oil
- 7. Iodine value of an oil
- 8. Estimation of sulphur in an organic compound
- 9. Estimation of methyl ketone

IV Special Interpretation of Organic Compounds UV, IR, PMR And Mass Spectra Of 12 Compounds

- 1. 1,3,5- Trimethyl benzene
- 2. Pinacolone

- 3. p-Methoxybenzylalcohol
- 4. Benzyl bromide
- 5. Phenylacetone
- 6. Acetone
- 7. Isoopropyl alcohol
- 8. 2-N,N-Dimethylaminoethanol
- 9. Pyridine
- 10. 4-Picoline
- 11. 1,3-dibromo 1, 1- dicholoropropene
- 12. Cinnamaldehyde

Organic Practical

: Max.Marks :60

Preparation	10 Marks
Estimation	20 Marks
Record	10 Marks
Interpretation of spectra	10 Marks
Practical Viva	10 Marks
Total	60 Marks

RECOMMENDED BOOKS

- 1. A text book of Practical Organic Chemistry by Arthur I.Vogel, CBS Pub.,
- 2. Laboratory Manual of Organic Chemistry Raj K. Bansal, Wiley Eastern limited.
- 3. Laboratory manual of Organic Chemistry by Mann and Saunders.
- 4. Advanced Practical Chemistry, Chatterjee, Books & Allied (P) Ltd.,

IV SEMESTER INORGANIC CHEMISTRY PRACTICAL – II (60 HRS)

Quantitative Analysis Of Complex Materials

A. Estimation of mixture containing two metal ions

- a. Copper and Nickel
- b. Copper and Zinc
- c. Iron and Nickel
- d. Iron and Magnesium

B. Analysis of alloys (Need not be given for examination)

- 1. Estimation of tin and lead in solder.
- 2. Estimation of copper and zinc in brass.
- 3. Estimation of chromium and nickel in stainless steel.

C. Analysis of inorganic complex compounds (Need not be given for examination)

- 1. Preparation of cis and trans potassium bis(Oxalato)diaquochromate and analysis of each of these for Chromium.
- 2. Preparation of potassium tris(Oxalato)ferrate(III) and analysis for iron and oxalate.

D. Preparation of the following :

- 1. Sodium hexanitrocobaltate (III)
- 2. Tris (ethylene diamine) cobalt (III) chloride
- 3. Chloropentammine cobalt (III) chloride
- 4. Bis (acetylacetanto) copper (II)
- 5. Hexamminenickel (II) chloride
- 6. Sodium bis(thiosulphato) cuprate (I)
- 7. Hexamminecobalt (III) chloride
- 8. Ammonium hexachloro stanate(IV).
- 9. potassium trioxalato ferrate(III),

E. List of spectra to be given for interpretation

- 1. ³¹P NMR Spectra of methylphosphate
- 2. 31 P NMR Spectra of HPF₂
- 3. 19 F NMR Spectra of CIF₃
- 4. ¹H NMR Spectra of Tris (ethythioacctoacetanato) cobalt (III)
- High resolution ^I H NMR spectra of (N-propylisonitrosoacetylacetoneiminato) (acetylacetoneiminato) Nickel (II)
- 6. ESR Spectra of the aqueous $ON(SO_3)^2$ ion.
- 7. ESR Spectra of the H atoms in CaF_2 .
- 8. ESR Spectra of the $(Mn (H_2O)_6)^{2+}$.
- 9. ESR Spectra of the bis (salicylaldiminato) copper (II)
- 10. IR Spectra of the sulphato ligand.
- 11. IR Spectra of the dimethylglyoxime ligand and its Nickel (11) complex.

- 12. IR Spectra of carbonyls
- 13. Mossbauer spectra of FeSO₄ 7H₂O
- 14. Mossbauer spectra of FeCl₃.
- 15. Mossbauer spectra of $(Fe(CN)_6)^{3-1}$
- 16. Mossbauer spectra of $(Fe (CN)_6)^{4-}$

Inorganic Practical	: Max.Marks :60
Preparation	10 Marks
Estimation :	
Volumetric	10 Marks
Gravimetry	10 Marks
Record	10 Marks
Interpretation of spectra	10 Marks
Practical Viva	10 Marks
Total	60 Marks

Recommended books

1. Textbook of quantitative Analysis, A. Vogel, CBS Pub.,

2. Quantitative Inorganic Analysis, Upadhyaya, S. Chand & Co., Ltd.,

3. Handbook of Methods in Environmental Studies VOL. Water and Wastewater Analysis,

S.K.Maiti, ABD Publisher 2005.

4. Mars G. Fontana, Corrosion Engineering, Mc Graw Hill series in Materials Science and Engineering, 1987.

IV SEMESTER

PHYSICAL CHEMISTRY PRACTICAL II (60 HOURS)

Experiments in electrochemistry, conductometry and potentiometry

Experiments given to familiarise only the interpretation of spectra provided. Interpretation of simple UV-visible spectra of simple molecules for the calculation of molecular data and identification of functional groups (5 typical spectra will be provided).

IR and NMR spectral calculations of force constant –identification and interpretation of a spectra (5 each in IR and NMR will be provided).

List of experiments for physical chemistry practical - II

Conductometric experiments:

- 1. Determination of cell Constant.
- Determination of the equivalent conductance of a weak acid at different concentrations and verification of Ostwald's dilution law and calculation of the dissociation constant of the acid.
- Determination of equivalent conductance of a strong electrolyte at different concentrations and examination of the validity of the Onsager's theory as limiting law at high dilutions.
- 4. Conductometric titrations of a mixture of HCl, CH₃COOH and NaOH.
- 5. Determination of the dissociation constant of formic acid at different dilution.
- 6. Determination of the strength of strong acid using strong base.
- 7. Determination of strength of weak acid using strong base.
- 8. Determination of the strength of strong acid using weak base.
- 9. Determination of the strength of Barium chloride using Magnesium sulphate.

Potentiometric experiments

- 10. Determination of strength of strong acid using strong base and weak acid against strong base
- 11. Determination of dissociation constant of a weak acid.
- 12. Determination of the strength of FeSO₄ using KMnO₄

- 13. Determination of strength of KI using KMnO₄
- 14. Determination of pH of a given buffer solution
- 15. Determination of strength of a mixture of halides using $AgNO_3$ Precipitation titration.

PHYSICAL PRACTICAL	Max. Marks 60
Experiment	30 Marks
Interpretation of spectra	10 Marks
Record	10 Marks
Viva-voce	10 Marks
Total	60 Marks

REFERENCE

1. Advanced Practical Chemistry, Chatterjee, Books & Allied (P) Ltd.,