B.SC. MATHEMATICS (With effect from 2021 – 2022) CBCS PATTERN WITH OUTCOME BASED EDUCATION THE COURSE OF STUDY AND THE SCHEME OF EXAMINATIONS

S.No	Part	Study Cor	tudy Components		Credit	Title Of The	Cia	Univ	Total
		Cours	e title	Hrs./Week		Paper		Exam	
		1		SEMEST	ER – I	I		1	
1	Ι	Language	Paper I	6	4	Tamil –I	25	75	100
						/other			
2	П	English	Paper I	6	4	English –I	25	75	100
3	III	Core	Paper I	5	4	Algebra	25	75	100
		Corro	Domon II	3	4 Aigeora		25	75	100
4	- 111	Core	Paper II	4	4	Trigonometry	25	/5	100
5	111	Allied Theory	Paper I	4	4	Allied Physics-I/ Allied Mathematical Statistics- I	25	75	100
6	III	Allied Practical	Practical I	3	0	Allied Practical: Physics/ Mathematical Statistics	0	0	0
7	IV	EVS		2	2	EVS	25	75	100
			I	30	22		150	450	600
				SEMEST	ED II				
	-	-		SENIESI					100
	I	Language	Paper II	6	4	Tamil –II /other language	25	75	100
2	II	English	Paper II	4	4	English –II	25	75	100
3	III	Core	Paper III	5	4	Calculus	25	75	100
4	III	Core	Paper IV	4	4	Solid Geometry	25	75	100
5	III	Allied Theory	Paper II	4	4	Allied Physics-II/ Allied Mathematical Statistics- II	25	75	100
6	III	Allied Practical	Practical I	3	2	Allied Practical: Physics/ Mathematical Statistics	40	60	100

*	Summe	er internshin	nrogramme	at the end of	IV semes	ter (Ontional) –]	Extra c	redit_1 (<u> </u>
				30	24		125	475	600
,	1 *	Major	II	<i>L</i>		Statistics		50	50
7	IV	Non	Elective	2	2	with R Programming Functional	_	50	50
6	IV	Skill Based	Subject II	2	2	Business Statistics	-	50	50
5	III	Allied	Paper IV	6	5	Financial Accounting- II	25	75	100
4	III	Elective	Paper II	4	3	Vector Analysis	25	75	100
3	III	Core	Paper VI	4	4	Abstract Algebra	25	75	100
2	II	English	Paper IV	6	4	English –IV	25	75	100
1	I	Language	Paper IV	6	4	Tamil –IV /other language	25	75	100
				SEMEST	$\mathbf{E}\mathbf{R} = \mathbf{I}\mathbf{V}$				000
		Major	1	30	24	Mathematics	125	475	600
7	IV	Non	Elective	2	2	competitive Examinations Functional	-	50	50
6	IV	Skill Based	Subject I	2	2	Mathematics for	-	50	50
5	III	Allied	Paper III	6	5	Financial Accounting I	25	75	100
4	III	Elective	Paper I	4	3	Fourier	25	75	100
3	III	Core	Paper V	4	4	Differential Equations and Laplace Transforms	25	75	100
2	II	English	Paper III	6	4	English –III	25	75	100
1	Ι	Language	Paper III	6	4	Tamil –III /other	25	75	100
				SEMEST	ER III				
				30	25		165	535	700
8	IV	Soft Skill		2	1	Soft Skill	-	50	50
7	IV	Value Education		2	2	Value Education	-	50	50
_									

				SEMEST	ER – V				
1	III	Core	Paper VII	6	4	Linear Algebra	25	75	100
2	III	Core	Paper VIII	6	4	Real Analysis- I	25	75	100
3	III	Core	Paper IX	6	4	Statics	25	75	100
4	III	Core	Paper X	5	3	Operations Research-I	25	75	100
5	III	Elective	Paper III	5	3	Graph Theory	25	75	100
6	IV	Skill Based	Subject III	2	2	Numerical Methods	-	50	50
				30	20		125	425	550
				SEMEST	ER – VI	•			
1	III	Core	Paper XI	5	4	Real Analysis- II	25	75	100
2	III	Core	Paper XII	5	4	Dynamics	25	75	100
3	III	Core	Paper XIII	5	4	Complex Analysis	25	75	100
4	III	Core	Paper XIV	5	3	Programming in C Language- Theory	25	75	100
5	III	Core Practical	Practical I	3	2	Computer Practical in C language	40	60	100
6	III	Elective	Paper IV	5	3	Operations Research-II	25	75	100
7	IV	Skill Based	Subject IV	2	2	Mathematical Modelling with Spreadsheet	-	50	50
8	V	Extension Activities	-	3			100	0	100
				30	25		265	485	750
	Tota	İ		180	140				3800
	•	* Mini p	roject in the	VI-Semester	(optional	l) – Extra Credit	1 to 3		

CONSOLIDATED STATEMENT

PART	SUBJECT	PAPERS	HOURS	CREDIT	TOTAL	MARKS	TOTAL
					CREDITS		MARKS
			24	4	1.5	100	100
Part –	Language	4	24	4	16	100	400
1							
Part –	English	4	22	4	16	100	400
II	0						
Part –	Allied Theory	2	10	4-5	9	100	200
III	(Odd Sem.)						
	Allied Theory	2	10	4-5	9	100	200
	(Even Sem.)	_	10		-	100	200
	(,						
	Allied	1	3+3	2	2	100	100
	Practical						
	(Odd & Even						
	Sem.)						
	Electives	4	18	3	12	100	400
	Core – Theory	14	69	3-4	54	100	1400
	Core-	1	3	2	2	100	100
	Practical						
Dout	Environmental	1	2	2	2	100	100
Part –	Environmental	1	Z	Z	2	100	100
1 V	Science						
	Soft Skills	1	2	1	1	50	50
	Value	1	2	2	2	50	50
	Value	1	Z	Z	Z	50	50
	Education						
	Language and	2	4	2	4	50	100
	others/ NME						
		4	0	2	0	50	
	Skill Based	4	8	2	8	50	200
Part –	Extension	1	-	3	3	100	100
V	Activities						
	T_4_1		100		1.40		2000
	Total		100		140		3000

B.Sc. MATHEMATICS

PROGRAMME EDUCATIONAL OBJECTIVES (PEO):

PEO 1: To develop problem-solving skills and apply them independently to problems in pure and applied mathematics.

PEO 2: To develop abstract mathematical thinking.

PROGRAMME OUTCOMES (PO):

PO 1: Students majoring in Mathematics attain proficiency in Critical thinking, Problem solving and perform computations in higher mathematics and logical reasoning.

PO 2:Demonstrate proficiency in writing proofs.

PO 3: Formulate and analyze mathematical problems, precisely define the key terms, and draw

clear and reasonable conclusions.

PO 4:Use mathematical ideas to solve real-world problems

PO 5: Students will be able to enhance analytical thinking to solve problems.

PO 6: Access and apply knowledge of computing and mathematics appropriate to the connected areas.

ALGEBRA

Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
Ι	21CMA1A	Core I	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
			5	75	5	75		

COURSE OBJECTIVES:

The students will be able to

- Develop their knowledge in Theory of Equations, Summation of Series, Matrices, Continued Fraction and Elementary Number Theory.
- Improve the problem-solving skills in Algebra.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Perceive the concepts of Polynomial Equation and to solve it	K3
CO2	Solve the problems using Horner's method and Newton's method	К3
CO3	Gain expertise in the concept of Summation of Series	K2
CO4	Study the types of matrices, Cayley Hamilton theorem and Diagonalisation of a Matrix	K2
C05	Acquire practical knowledge in the field of elementary number theory	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	М	S	М
CO2	S	S	М	М	S	М
CO3	S	S	М	S	М	S
CO4	М	М	S	S	М	S
CO5	М	S	S	М	S	S

S- Strong; M-Medium; L-Low

UNIT-IV: MATRICES

Symmetric, Skew Symmetric, Hermitianand Skew Hermitian Matrices- Orthogonal and Unitary Matrices - Rank of Matrix- Consistency and Solutions of Linear Systems- Cayley Hamilton Theorem (without proof)- Eigen Values-Eigen Vectors-Similar Matrices-Diagonalisation of a Matrix.

UNIT - V: ELEMENTARY NUMBER THEORY

Prime Number-Composite Number-Decomposition of a Composite Number as a Product of Primes Uniquely (without proof)-Divisors of a positive integer-Congruence Modulo n-Euler Function(without proof)- Highest power of a Prime Number p contained in n!-Fermat's and Wilson's Theorems

DISTRIBUTION OF MARKS: THEORY10% AND PROBLEMS: 90%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	T.K.ManickavachagomPillay, T.N.Natarajan and K.S.Ganapathy Volume I &II.	Algebra	S.Viswanathan Printers & Publishes Pvt. Ltd.	2004

Descartes Rule of Signs – Approximate Solutions of Polynomials by Horner's method-Newton's method.

UNIT-III: SUMMATION OF SERIES

UNIT- II: THEORY OF EQUATIONS [Contd.]

UNIT-I: THEORY OF EQUATIONS

Polynomial Equation – Imaginary and Irrational roots – Symmetric Function of roots in terms of Coefficient – Sum of rthpowers of roots – Reciprocal Equation – Transformation of Equation.

Binomial, Exponential and Logarithmic series (Theorems without proofs) – Simple Problems.

15 Hours

15 Hours

15 Hours

15Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION	
1.	S.Arumugam	Algebra	New Gamma Publishing House	2003	
2.	A.Singaravelu	Algebra and Trignometry	Meenakshi Agency	2003	

WEB RESOURCES

 $1.\ http://lib1.org/_ads/390EDD85BC279835BA7847DA4724CB9C$

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

- 1. Dr. Nithyapriya, Assistant Professor of Mathematics.
- 2. Mrs. C. Revathi, Assistant Professor of Mathematics.

TRIGONOMETRY

Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
Ι	21CMA1B	Core II	Hrs/Week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
			4	60	4	60		

COURSE OBJECTIVES:

The students will be able to

- Apply and establish the concept of trigonometric identities in proving the given statement
- Improve problem solving skills in Trigonometry

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Develop the knowledge about Expansions	K1
CO2	Expand inverse circular functions	K2
CO3	Evaluate circular and hyperbolic functions	К3
CO4	Study the concepts of logarithms of quantities	К3
CO5	Find the expansion of various types of series	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	М	S	S
CO2	S	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	М	М	S	S	М	S
CO5	S	S	М	S	М	S

S- Strong: M- Medium: L- Low

UNIT V : SUMMATION OF TRIGONOMETRIC SERIES 12 Hours

Logarithm of complex quantities. Summation of Series using Differences.

Gregory Series- Euler Series - C + iS method.

DISTRIBUTION OF MARKS: THEORY20% AND PROBLEMS: 80%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	S.Narayanan and T. K. MancikavachagomPillay	Trigonometry	S.Viswanathan printers &Publishers Pvt. Ltd. Chennai	2004

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	P. Kandasamy. K.Thilagavathy	Mathematics for B.Sc. Vol- I,II,II & IV	S.Chand&Company Ltd. New Delhi-55.	2004

UNIT I: EXPANSIONS

Expansions of $Cosn\theta$, Sin $n\theta$ - Expansion of tan $n\theta$ - Expansion of tan [A+B+C+...] – Formation of Equations - Solution of Trigonometric equations.

UNIT II: EXPANSIONS (Contd.)

 $Sin^n\theta$, $Cos^n\theta$ in terms of Functions of multiples of θ - Expansions of $sin\theta$, $cos \theta$ and $tan \theta$ in a series of ascending powers of θ – Expansion of Inverse circular Functions.

UNIT III: HYPERBOLIC FUNCTIONS

Definition - Relation between circular and Hyperbolic Functions - Inverse Hyperbolic Functions.

UNIT IV: LOGARITHM AND SUMMATION OF SERIES 12 Hours

12 Hours

12 Hours

2.	Duraipandian and Laxmi Duraipandian	Trigonometry	Emerald Publishers, Chennai	1984
3.	B.S. Grewal	Higer Engineering Mathematics	Khanna Publishers, New Delhi.	2002
4.	S.L.Loney	Plane Trigonometry, Part II	Cambridge Universitry Press, London.	1982
5.	A. Singaravelu	Algebra and Trigonmetry, Vol- I and II	Meenakshi Agency, Chennai	2003
6.	P.R.Vittal	Trigonometry	MargamPublications, Chennai.	2004

WEB RESOURCES

- 1. https://open.umn.edu/opentextbooks/textbooks/algebra-and-trigonometry
- 2. https://www.emathinstruction.com/algebra-2-trigonometry/

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5.PPT** Presentations

SYLLABUS DESIGNERS

- 1. Dr. M. Devi, Assistant Professor of Mathematics.
- 2. Dr. B. Vijayalakshmi, Assistant Professor of Mathematics.

ALLIED MATHEMATICAL STATISTICS-I

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
Ι	21CAST1A	Allied	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
			4	60	4	60		

COURSE OBJECTIVE:

The students will be able to

- Comprehend the fundamental concepts in Statistics.
- Recognize the fundamental meanings of correlation and regression.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Understand Addition and Multiplication laws of Probability, Independence of Events, Conditional Probability and Baye's theorem	K3
CO2	Acquire knowledge about Random Variables, Expectation, Moments and to solve problems	K2
CO3	Learn about Moment Generating Function, Characteristic Function, Properties, Inversion and Uniqueness Theorem	K3
CO4	Gain knowledge aboutCorrelation, Karl Pearson's Coefficient of Correlation and Rank Correlation.	K3
CO5	Apply Regression for the investigation of relationship between the variables	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING OF PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	S	М	S
CO2	S	S	S	S	S	S
CO3	М	S	М	М	S	S
CO4	S	S	М	S	М	S
CO5	S	S	М	S	S	S

S- Strong; M-Medium; L-Low

UNIT-I: THEORY OF PROBABILITY

Basic Terminology- Mathematical Probability- Statistical Probability – Axiomatic Probability - Some Theorems on Probability – Addition Theorem of Probability – Extension of Addition Theorem of Probability to n Events – Boole's Inequality - Conditional Probability -Multiplication Theorem of Probability – Independent Events – Bayes' Theorem- Simple

Problems.

UNIT- II : RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS 12 Hours

Introduction – Distribution Function-Discrete Random Variable- Continuous Random Variable–Two Dimensional Random Variables – Joint Probability Mass Function – Two Dimensional Distribution Function – Marginal Distribution Functions – Joint Density Function, Marginal Density Function - Conditional Distribution Function and Conditional Probability Density Function –Mathematical Expectation – Expected Value of function of a Random Variable – Properties of Expectation – Properties of Variance – Covariance - Simple Problems.

UNIT- III: MOMENT GENERATING AND CHARACTERISTIC FUNCTIONS 12 Hours

Moment Generating Function - Characteristic Function – Properties of Characteristic Function – Some Important Theorems- Inversion Theorem (Levy Theorem - Statement only)-Uniqueness Theorem of characteristic Function (Statement only) – Simple problems.

UNIT-IV: CORRELATION

Introduction - Meaning of Correlation - Scatter Diagram - Karl Pearson's Coefficient ofCorrelation - Calculation of the Correlation Coefficient for a Bivariate Frequency Distribution-RankCorrelation-SimpleProblems.

UNIT – V- LINEAR AND CURVILINEAR REGRESSION 12 Hours

Introduction-Linear Regression – Curvilinear Regression-Regression Curves-Simple Problems.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

12 Hours

TEXT BOOK

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	S. C. Gupta & V.K Kapoor	Fundamentals of Mathematical Statistics	Sultan & Sons.	1974

REFERENCE BOOKS

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR
				OF
				PUBLICATION
1	Hogg, R.V. &Craig.A	Introduction to	Macmillan	1998
		Mathematical		
		Statistics		
2	Mood.A.MGraybill.F.A.	Introduction to	McGraw Hill	1974
	&Boes.D.G	Theory of		
		Statistics		
3	Wilks S.S	Elementary	Oxford and	-
		Statistics Analysis.	IBH	
4	Snedecor. G. W	Statistical	Oxford and	1967
	&Cochran.W.G	Methods	IBH	
5	Hoel,P.G(1971)	Introduction to	Wiley.	1971
		Mathematical		
		Statistics		

WEB RESOURCES

- 1. www.statisticssolutions.com/correlation-pearson-kendall-spearman/
- 2. http://www.srmuniv.ac.in/sites/default/files/downloads/CORRELATION.pdf
- 3. https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86

TEACHING METHODOLOGY

- 1. Black Board Teaching
- 2. Smart Board Class Teaching
- 3. Giving Assignments for each units
- 4. Class room Discussions and seminars.
- 5. PPT Presentations.

SYLLABUS DESIGNERS

- 1. Dr. M. Devi, Assistant Professor of Mathematics.
- 2. Mrs.R. Ramya, Assistant Professor of Mathematics.

Semester	Subject	Category	Lecture		Theory	Practical		Credits
	Code							
I &II	21CAST21	Allied	Hrs/week	Hrs/Sem	0	Hrs/week	Hrs/Sem	2
		Practical	3	45		3	45	

ALLIED PRACTICAL - MATHEMATICAL STATISTICS

COURSE OBJECTIVES:

The students will be able to

- Apply statistical methods to solve mathematical problems
- Use statistical test in testing hypothesis on data.

SYLLABUS

- 1. Measures of location and Dispersion (absolute and relative).
- 2. Computation of Correlation Coefficient for Raw and Grouped data, Rank correlation coefficient.
- 3. Computation of Regression Equations for Raw and Grouped data.
- 4. Curve Fitting by the method of Least Square
 - a. y = ax + b
 - b. $y = ax^2 + bx + c$
 - c. $y = ae^{bx}$
 - d. $y = ax^b$
- 5. Fitting of Binomial, Poisson, Normal Distributions and Test of Goodness of fit.
- 6. Large Sample tests with regard to population, mean, proportion, standard deviation.
- 7. Exact test with respect to mean, variance and coefficient of correlation.
- 8. Test of Independence of attributes based on chi square distribution.
- 9. Confidence Interval based on Normal, t and chi square and F distribution.
- 10. Problems based on ANOVA One way and Two way classification.
- 11. Completely Randomized Design.
- 12. Randomized Block Design.

DISTRIBUTION OF MARKS: PROBLEMS 100%

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	S.P.Gupta	Statistical Methods	S Chand & Company	2013
2.	R.S.N. Pillai Bagavathi	Practical Statistics	S Chand & Company	2010

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Hogg, R.V. &Craig.A.T	Introduction to Mathematical Statistics	Macmillan	1998
2.	Mood.A.MGraybill.F.A. &Boes.D.G	Introduction to Theory of Statistics	McGraw Hill	1974
3.	Snedecor. G. W &Cochran.W.G	Statistical Methods	Oxford and IBH	1967
4.	Hoel,P.G	Introduction to Mathematical Statistics	Wiley Eastern	1971
5.	S. C. Gupta & V.K Kapoor	Fundamentals of Mathematical Statistics	Sultan & Chand Sons	2011
6.	Wilks S.S	Elementary Statistics Analysis	Princeton University Press	2016

WEB RESOURCES

- 1. http://enwikipedia.org/wiki/statistics.
- 2.http://en.wikipedia./org/wiki/mathematics

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

- 1. Mrs. G. VinuPriya, Head and Assistant Professor of Mathematics
- 2. Mrs. R. Ramya , Assistant Professor of Mathematics

ALLIED PRACTICAL - MATHEMATICAL STATISTICS SCHEME OF VALUATION FOR PRACTICAL EXAMINATIONS

Internal assessment: 40 Marks External assessment: 60 marks Total: 100 marks

External assessment: 60 marks

Record : 10 Marks Practical : 50 Marks

CALCULUS

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
Ι	21CMA2A	Core III	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
			5	75	5	75		

COURSE OBJECTIVES:

The students will be able to

- Gain knowledge about the fundamental principles, concepts in the areas of Differential and Integral Calculus.
- Apply the acquired knowledge and improve the analytical skills.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

СО	CO Statement	Knowledge
Number		Level(K1-K4)
CO1	Calculate the maxima and minima of differential equations	K1
CO2	Develop the knowledge about radius of curvature in Cartesian and Polar coordinates	K2
CO3	Understand the concept of Involutes,EvolutesandAsymptotes	K2
CO4	Improve the knowledge of Beta and Gamma functions	К3
CO5	Evaluate the area, volume and surface area using double and triple integrals	K4

Knowledge Level: K1-Remember, K2-Understand, k3-Apply, K4-Analyze

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	S	S	S
CO2	М	М	S	S	S	S
CO3	S	М	М	S	S	S
CO4	S	S	S	S	S	S
CO5	S	S	М	S	М	S

S- Strong; M-Medium; L-Low

UNIT-I: DIFFERENTIAL CALCULUS

nth Derivative- Leibnitz's theorem (without Proof) and its application- Total Differential -Maxima and Minima functions of two and three independent variables, Lagrange's method (Without proof), problems on this concepts.

UNIT-II: DIFFERENTIAL CALCULUS (Contd.)

Curvature, Radius of Curvature in Cartesian and Polar coordinates, p-r equation, Centre of Curvature.

UNIT-III: DIFFERENTIAL CALCULUS (Contd.)

Evolutes and Involutes - Asymptotes: Methods (without proof) of finding Asymptotes of rational algebraic curves with special cases.

UNIT- IV: INTEGRAL CALCULUS

Reduction Formulae: $\sin^n \theta$, $\cos^n \theta$, $\tan^n \theta$, $\csc^n \theta$, $\sec^n \theta$, $\cot^n \theta$ -Jacobians -Beta and Gamma functions - properties and problems.

UNIT- V: INTEGRAL CALCULUS (Contd.)

Double Integrals- Triple Integrals- Application to Area, Surface Area and Volume.

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS 90%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1	S.Narayanan and T.K.Manickavachagompillay	Calculus Volume I,II	S.Viswanathan printers and publishers pvt.ltd–Chennai	Volume I(2007) Volume II(2010)

15 Hours

15 Hours

15 Hours

15 Hours

REFERENCE BOOKS

S.N	AUTHORS	TITLE	PUBLISHERS	YEAR OF
0				PUBLICATION
1	Shanthi Narayan	Differential	Shymlal charitable	2001
		Calculus	trust,Newdelhi	
2	S.Sudha	Calculus	Emerald	1998
			publishers,chennai	
3	P.Kandasamy,	Mathematics for	S,Chand& company	2004
	K.Thilagavathy	B.Sc Volume	ltd ,Newdelhi-55	
		I,II,III,IV		

WEB RESOURCES

1. https://www.khanacademy.org/math/calculus-1

2. https://www.britannica.com/science/calculus-mayhematics

TEACHING METHODOLOGY

- 1.Class room teaching
- 2.Assignments
- 3. Discussions
- 4. Home Test
- 5. PPT presentation

SYLLABUS DESIGNERS

- 1. Dr.M. Kasthuri, Assistant professor of Mathematics.
- 2. Mrs.B. Babyshalini, Assistant professor of Mathematics.

SOLID GEOMETRY

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
II	21CMA	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
	2B		4	60	4	60		

COURSE OBJECTIVES:

The students will be able to

- Understand the knowledge in various concept of Analytical Solid Geometry.
- Learn aboutPlane, Straight Line, Sphere, Cone and Cylinder

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Study the concept of plane and apply the knowledge in solving problems	K1
CO2	Learn the concept of straight line	К3
CO3	Find the equation of sphere	К3
CO4	Discuss the importance of cone	K2
CO5	Apply the concept of cylinder in various problems	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING OF COURSE OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	S	S	S
CO2	S	М	S	S	S	S
CO3	S	S	М	М	М	М
CO4	S	М	М	М	М	М
CO5	S	S	S	М	S	М

S-Strong M-Medium L-Low

line with respect to a plane – Length and equation of the shortest distance between two skew

UNIT II: STRAIGHT LINE

UNIT III: SPHERE

lines - Coplanar lines.

Equation of the sphere – Length of the tangent – Tangent plane – Section of a sphere by a plane – Orthogonal spheres – Equation of a sphere through a given circle.

UNIT IV: CONE

Equation of a cone with a given vertex and a given guiding curve - Equation of a cone with its vertex at the origin - Condition for the general equation of the second degree to represent a cone - Right circular cone - Enveloping cone - Tangency of a plane to a cone.

UNIT V: CYLINDER

Equation of a cylinder with a given generator and a given guiding curve - Right circular cylinder - Enveloping cylinder – Enveloping cylinder as a limiting form of an enveloping cone.

DISTRIBUTION OF MARKS: PROBLEMS 75 % AND THEORY 25%

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHER S	YEAR OF PUBLICATIO N
1.	S.G.Venkatachalapath y	Analytical Geometry	Margham Publications	2008.(For Units I,II and III)
2.	P.DuraiPandian	Analytical Geometry of Three Dimensions	Mugil Publishers	Revised Edition, 1983

UNIT I: PLANE

General equation of a plane – Equation of a plane in the normal form – Angle between planes – Plane through three given points – Equation of a plane through the line of intersection of two planes.

Symmetrical form of a straight line – Image of a point with respect to a plane – Image of a

12Hours

12Hours

12Hours

12Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	P.R.Vittal	Vector Analysis, Analytical Solid Geometry, Sequence and Series	Margham Publications	3 rd Edition, 2003.(For Units IV and V)
2.	S. G. Venkatachalapathy	Analytical Geometry	Margham Publications	1 st Edition,

WEB RESOURCES

1. https://www.brainkart.com/article/Three-Dimensional-Analytical-Geometry-6453

2.https://www.intmath.com/plane-analytic-geometry/intro.php

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home Test
- 5. PPT presentation

SYLLABUS DESIGNERS

- 1. Dr.N. Nithyapriya, Assistant Professor of Mathematics
- 2. Dr. M. Kasthuri, Assistant Professor of Mathematics

ALLIED - MATHEMATICAL STATISTICS-II

Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
II	21CAST2A	Allied	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
			4	60	4	60		

COURSE OBJECTIVES:

The students will be able to

- Impart knowledge in statistical concepts which includes Distribution, Sampling, Estimation and Test of Significance
- Improve practical knowledge in the field of Mathematical Statistics.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

	CO Statement	
CO		Knowledge
Number		Level(K1-K4)
CO1	Understand the concepts of Distribution	K2
CO2	Acquire the knowledge about Sampling Distributions	K2
CO3	Discuss about hypothesis, analyze largessamples and draw conclusions	K3
CO4	Analyze small samples and draw conclusions	K4
C05	Learn about the Estimation Theory	K2

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	S	S	М
CO2	М	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT - I : DISTRIBUTIONS

Discrete Distributions: Binomial, Poisson - Continuous Distributions: Normal Distributions.

UNIT – II :SAMPLING DISTRIBUTIONS

Student's 't' Distribution – Derivation of student's 't' distribution –Fisher's 't' – Distribution of Fisher's 't' – Constants of t-distribution – Limiting form of t-distribution - Chi-Square Distribution - Derivation of the Chi-Square Distribution – Moments Generating Function, Cumulant Generating Function, Limiting form of Chi-Square Distribution – Characteristic Function of Chi-Square Distribution – Mode and Skewness of Chi-Square Distribution - Additive property of Chi-Square Variates - F- distribution(without proof)- Constants, Mode and Points of inflexion of F-Distribution.

UNIT – III - TESTING OF LARGE SAMPLES

Test of Significance –Null and Alternative Hypothesis – Error in sampling – Critical Region and Level of Significance- One tailed and Two tailed tests – Critical Values –Procedure for Testing of Hypothesis - Test of significance for large samples - Sampling of Attributes – Test of significance for Single Proportion, Difference of Proportions – Standard Error for Sample Mean – Test of significance for Single Mean, Difference of Means, Difference of Standard Deviation.

UNIT – IV - TESTING OF SMALL SAMPLES

Application of t-Distribution – t-test for Single Mean, Difference of Means - Paired t-test for Difference of Means- Applications of Chi - Square Distribution – Inferences about a Population Variance – Goodness of Fit Test- Test of Independence of Attributes - Contingency tables-Yates's Correction (for 2×2 Contingency table) – Application of F- Distribution – F- test for Equally of Two Population Variances- Simple Problems.

UNIT - V - THEORY OF ESTIMATION

Characteristics of Estimators - Concept of Unbiasedness – Consistency – Efficient Estimators – Most Efficient Estimators – Sufficiency- Cramer –Rao Inequality –Method of Moments - Power of the test – Neymann Pearson lemma.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

20

12 Hours

12 Hours

12 Hours

12 Hours

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	S. C. Gupta and V.	Fundamentals of	Sultan &Sons	1971
	K. Kapoor	Mathematical		
		Statistics		

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHER S	YEAR OF PUBLICATIO N
1.	Hogg, R. V. &Craig.A.T	Introduction to Mathematical Statistics	Macmillan	1998
2.	Mood.A.MGraybill.F. A&Boes.B.	Introduction to theory of statistics	McGraw Hill	1974
3.	Snedecor.G.W&Cochr an.W.G	Statistical Methods,	Oxford and IBH	1967
4.	Hoel P.G	Introduction to Mathematical Statistics	Wiley	1971
5.	Wilks S.S	Elementary Statistics Analysis	Princeton University Press	2016
6	Dr.S.P.Gupta	Statistical Methods	Sultan Chand & sons	2012

WEB RESOURCES

- 1. https://www.e-booksdirectory.com/listing.php?category=413
- 2. https://www.textbooks.com/Catalog/MDL/Intermediate-and-Advanced-Statistics.php

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNERS

- 1. Mrs.G. VinuPriya, Head and Assistant Professor of Mathematics
- 2. Mrs. R. Ramya, Assistant Professor of Mathematics

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21CMA3A	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
		Paper V	4	60	4	60		

COURSE OBJECTIVES:

The students will be able to

- Identify the type of a given differential equation and apply the appropriate analytical technique for finding the solution of first order and higher order ordinary differential equations.
- Find the Laplace Transform of specified functions and solve linear ordinary differential equation using Laplace Transforms.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

•	CO Statement	Knowledge Level (K1-K4)
CO1	Understand the different types of solvable equations	K2
CO2	Apply the method of undermined coefficients to solve the non-homogenous linear differential equations with constant coefficients	K2
CO3	Solve simultaneous equations	K3
CO4	Use the Laplace transform in finding the solution of linear differential equations	К3
C05	Find the solution of first order linear partial differential equations using Lagrange's method	K2

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	S	S	М
CO2	М	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT – I: ORDINARY LINEAR DIFFERENTIAL EQUATIONS 12 Hours

Equations of the First Order and Higher Degree: Equations Solvable for p, Equations Solvable for x and Equations Solvable for y – Clairaut's Equations, Equations of second order with Constant Coefficients.

UNIT -II: ORDINARY LINEAR DIFFERENTIAL EQUATIONS (CONTD.) 12 Hours

Equations of the Second Order: Euler's homogenous Linear Equations with Variable Coefficients - Legendre's Linear Equations (second order only) - Method of Variation of Parameters.

UNIT – III: DIFFERENTIAL EQUATIONS OF OTHER TYPES 12 Hours

Simultaneous Equations of first order – Total Differential Equations – Solving Pdx + Qdy+ Rdz = 0.

UNIT – IV: LAPLACE TRANSFORMS

Laplace Transform – Inverse Laplace Transform – Properties – Application of Laplace Transform to solution of first and second order Linear Differential equations (with constant coefficients)

UNIT - V: PARTIAL DIFFERENTIAL EQUATIONS

Formation of a PDE – Complete Integral - Particular Integral – Singular Integral, Equations, Solvable by direct Integration solving equations of the types: f(p, q) = 0, f(x, p, q) = 0, f(y, q)q) = 0, f(z, p, q) = 0, f(x, p) = f(y, q), z = px + qy + f(p, q) (Only standard types) -Lagrange's equations.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS 80%

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	Kandasamy. P	Mathematics	S. Chand and	2004
	&Thilagavathy. K	for B.Sc Vol.	Company Ltd.,	
		III	New Delhi -55	
2.	Narayanan. S	Calculus	S. Viswanathan	2004
	&Manicavachagam		Printers and	
	Pillay. T K		Publishers Pvt.	
			Ltd., Chennai	

12 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR
				OF DUDI ICATION
				PUBLICATION
1.	Raisinghania, M	Ordinary and Partial	S. Chand and	2001
	D	Differential Equations	Company Ltd.,	
			New Delhi -55	
2.	Spiegel, M R	Advanced	Tata McGraw	2005
		Mathematics for	Hill edition,	
		Engineers and	New Delhi	
		scientists		
3.	Spiegel, M R	Laplace Transforms	Tata McGraw	2005
		_	Hill edition,	
			New Delhi	
4.	Sudha, S	Differential Equations	Emerald	2003
		and Integral	Publishers,	
		Transforms	Chennai	
5.	Venkataraman,	Higher Engineering	III – B,	1998
	M K	Mathematics	National	
			Publishing Co.,	
			Chennai.	
6	Vittal, P R	Differential Equations	Margham	2004
		and Laplace Transform	Publishers,	
			Chennai	
7.	Grewal, B S	Higher Engineering	Khanna	2002
		Mathematics	Publishers,	
			New Delhi	
8.	Ross, S L	Differential Equations,	John Wiley and	1984
		III Edition	Sons, New	
			York	

WEB RESOURCES

1.https://www.schandpublishing.com/books/higher-education/mathematics/ordinary-partial-differential-equations/9789352535866/#.XfnJdmQzYdU

2.https://www.sapnaonline.com/general-

 $search?searchkey = Differential_Equations_and_Integral_Transforms+by+s+sudha$

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

Dr. N. Nithyapriya, Assistant Professor of Mathematics

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21CMA3B	Elective I	Hrs/Week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
			4	60	4	60		

ELECTIVE – I - FOURIER ANALYSIS

COURSE OBJECTIVES:

The students will be able to

- Understand the basic concepts of Fourier series and Fourier transforms and will solve problems in these fields of study.
- Find solutions to the differential equations. The portion on Fourier Transforms will help the students to do research in pure and applied mathematics.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level
		(K1-K4)
C01	Derive Fourier series of a given periodic function by evaluating Fourier coefficients	K2
CO2	Understand the nature of Fourier series that represent odd and even functions	K2
CO3	Expand an odd or even function as a half-range cosine or sine Fourier Series	K3
CO4	Compute Fourier Transform of sine and cosine integrals	K2
CO5	Solve the problems using Convolution Theorem and Parseval's Identity	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	М
CO2	S	М	S	М	S	М
CO3	М	S	М	S	М	S
CO4	S	М	S	S	М	S
CO5	М	S	S	М	S	S

S- Strong; M-Medium; L-Low

UNIT I: FOURIER SERIES

Dirichlet's conditions - Euler's formulae - Functions having Discontinuity - Fourier series in the interval $(0,2\pi)$ and $(-\pi,\pi)$.

UNIT II: FOURIER SERIES: (Contd.)

Fourier Expansions of odd and even functions in the interval $(-\pi, \pi)$ - Change of interval -Fourier series in the interval (0,2l) and (-l,l).

UNIT III :FOURIER SERIES: (Contd.)

Half- range Sine and Cosine series - Typical wave forms - Parseval's identity.

UNIT IV :FOURIER TRANSFORMS:

Definition - Fourier integrals - Fourier sine and cosine integrals - Fourier sine and cosine Transform – Simple Problems.

UNIT V : FOURIER TRANSFORMS: (Contd.)

Properties of Fourier Transforms - Convolution Theorem for Fourier Transforms (without proof) – Parsaval's Identity – Simple Problems.

DISTRIBUTION OF MARKS: THEORY 20% AND PROBLEMS: 80%

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	P.R.Vittal and	Vector Calculus,	Margham	2004
	V.Malini	Fourier Series and	Publications,	
		Fourier Transform	Chennai	
2.	Dr. A.	Transforms and	Meenakshi Agency	2013
	Singaravelu	Partial Differential		
		Equations		

TEXT BOOK

12 Hours

12 Hours

12 Hours

12 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	S. Narayanan and	Calculus	S.Viswanathan	2004
	T.K.Manicavachago		Printers & Publishers	
	mPillay		Pvt. Ltd. Chennai	
2.	B.S.Grewal	Higher	Khanna Publishers,	2002
		Engineering	New Delhi	
		Mathematics		
3.	G.B. Thomas and	Calculus and	Wesley (9 th Edn),	1998
	R.L.Finney	Analytic	Mass. (Indian Print)	
		Geometry		
4.	M.K.Venkataraman	Engineering	National Publishing	1992
		Mathematics	Company, Chennai.	
		– Part B		

WEB RESOURCES

- 1. https://www.doverpublications.com/Fourier Series
- 2. https://www.springers.com/Fourier Series

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5.PPT** Presentations

SYLLABUS DESIGNER

Mrs.R.Ramya, Assistant Professor of Mathematics.

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21SMA3A	Skill	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	-	2
		based	2	30	2	30		
		subject -I						

SKILL BASED SUBJECT -I MATHEMATICS FOR COMPETITIVE EXAMINATIONS

COURSE OBJECTIVES:

The students will be able to

- Apply and establish Mathematical concepts in solving the given aptitude problems.
- Improve problem solving skills using basic Mathematical concepts.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Develop the knowledge about problems on numbers and	
	problems on ages	K1
CO2	Apply the concepts of Ratio and Proportion	K3
CO3	Evaluate the problems on Time and work, time and distance	K3
CO4	Apply the concepts of Calendars and Clocksand Pipe and Cistern	K3
CO5	Acquire the knowledge on Permutations and combinations	К3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	L	М	S	S	S
CO2	S	М	S	S	S	S
CO3	S	М	S	S	S	М
CO4	S	М	S	S	М	S
CO5	S	L	М	S	М	М

S- Strong: M- Medium: L- Low

Unit-I:	6 Hours
Problems on numbers - Problems on Ages(Chapter -7, 8)	
Unit-II:	6 Hours
Ratio and proportion (Chapter – 12)	
Unit -III:	6 Hours
Time and work–Time and distance(Chapter – 15,17)	
Unit-IV:	6 Hours
Pipe and Cistern-Problems on Calendars and Clocks(Chapter – 16, 27, 28)	
Unit- V:	6 Hours

Permutations and combinations (Chapter - 30)

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	Dr. R.S.	Quantitative Aptitude	S. Chand and	Reprint 2012.
	Aggarwal	(for Competitive	Company Ltd.,	
		Examinations),	Ram Nagar, New	
		Revised Edition,	Delhi	

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	AbhijitGuha	Quantitative	McGraw Hill	2016
		Aptitude for all	Education, sixth	
		Competitive	edition	
		Examinations		
2.	R.V.Praveen	Quantitative	PHI learning	2016
		Aptitude and	private limited,	
		Reasoning	Third edition, Delhi	
3.	Dr.N.K.Singh	Quantitative	UpkarPrakshan	2009
		Aptitude Test		

WEB RESOURCES

1.https://www.careerbless.com/aptitude/qa/home.php

2. https://www.toppr.com/guides/quantitative-aptitude

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations

SYLLABUS DESIGNER

Dr. N. Nithyapriya, Assistant Professor of Mathematics

NON MAJOR -I: FUNCTIONAL MATHEMATICS

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
III	21NMA3A	Non	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	-	2
		Major –I	2	30	2	30		

COURSE OBJECTIVES:

The students will be able to

- Apply and establish Mathematical concepts in solving the given aptitude problems.
- Improve problem solving skills using basic Mathematical concepts.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
C01	Develop the knowledge about problems on numbers and problems on ages	K1
CO2	Understand and apply the concepts of percentage	K2
CO3	Evaluate the problems on Profit and Loss	K3
CO4	Apply the concepts of Time and Work	К3
CO5	Acquire the knowledge on Probability and True Discount	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	S	S	S
CO2	S	М	М	S	S	S
CO3	S	S	S	S	S	М
CO4	S	М	S	S	М	S
CO5	S	М	М	S	М	М

S- Strong: M- Medium: L- Low
Unit – I:	6 Hours
Problems on Numbers – Problems on Ages (Chapter -7, 8)	
Unit – II:	6 Hours
Percentage (Chapter -10)	
Unit – III:	6 Hours
Profit and Loss (Chapter - 11)	
Unit – IV:	6 Hours
Time and Work (Chapter - 15)	
Unit – V:	6 Hours
Probability- True Discount (Chapter – 31,32)	

TEXT BOOK

S.No	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	R.S.	Quantitative Aptitude (for	S. Chand and	Reprint 2012.
	garwal	Competitive	Company Ltd.,	
		Examinations), Revised	Ram Nagar, New	
		Edition,	Delhi	

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	AbhijitGuha	Quantitative Aptitude	McGraw Hill	2016
		for all Competitive	Education, sixth	
		Examinations	edition	
2.	R.V.Praveen	Quantitative Aptitude	PHI learning private	2016
		and Reasoning	limited, Third edition	
			,Delhi	
3.	Dr.N.K.Singh	Quantitative Aptitude	UpkarPrakshan	2009
		Test		

WEB RESOURCES

- 1. https://www.careerbless.com/aptitude/qa/home.php
- 2. https://www.toppr.com/guides/quantitative-aptitude/

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations

SYLLABUS DESIGNER

Dr. N. Nithyapriya, Assistant Professor of Mathematics

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
IV	21CM	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
	A4A	paper –	4	60	4	60		
		VI						

CORE PAPER –VI - ABSTRACT ALGEBRA

COURSE OBJECTIVES:

The students will be able to

- Understand the theoretical concepts of algebra and to develop abstract thinking in algebra.
- Acquire knowledge on the basic theory of group, Cayley 's theorem, homomorphism, ring and ideal etc.,
- Learn the basic ideas and notions of abstract algebra which includes ring and field theory.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Provide an insight on theoretical knowledge about Group, Sub-	K3
	group and its examples and prove Lagrange's theorem and its	
	related concepts.	
CO2	Understand the notion of Counting Principle, Normal Subgroups,	K3
	Homomorphism and theorems related to it.	
CO3	Acquire the knowledge about Automorphisms, Cayley's theorem	K3
	and permutation group	
CO4	Explore the concepts of theory of Rings, Integral domain and	K3
	homomorphism.	
CO5	Gain knowledge about the Ideal, Prime ideal, Maximal ideal,	K3
	Euclidean ring and related theorems.	

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAM ME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	S
CO2	S	S	М	М	М	S
CO3	М	S	М	М	S	S
CO4	S	М	S	S	М	М
CO5	S	S	S	М	М	S

S- Strong M-Medium L-Low

UNIT – I: GROUPS	2 Hours
$Definition \ of \ a \ Group-Examples-Subgroups, \ Lagrange's \ theorem-\ Corollary-Simples-Subgroups, \ Lagrange's \ theorem-\ Corollary-Simples-Subgroups, \ Subgroups, \ S$	nple
Theorems.	
(Sections: 2.1 to 2.4)	
UNIT – II: GROUPS (Contd.)	2 Hours
$Counting \ Principle - Normal \ Subgroups - Homomorphisms - Theorems - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Normal \ Subgroups - Homomorphisms - Theorem - Simple \ Principle - Normal \ Subgroups - Homomorphisms - Homomorphisms - Homomorphisms - Normal \ Subgroups - Homomorphisms - $	oblems.
Section: 2.5 to 2.7 (Omit applications of 1 and 2 of 2)	
UNIT – III: GROUPS (Contd.)	2 Hours
Automorphisms – Cayley's Theorem – Permutation Groups.	
(Sections: 2.8 to 2.10)	
UNIT – IV: RINGS	2 Hours
Definition and Examples – Integral Domain – Homomorphism of Rings	
(Sections: 3.1 to 3.4)	
UNIT – V: RINGS (Contd.)	12 Hour
Idea: Prime Ideal and Maximal Ideal – Simple Theorems – Euclidean rings	
(Sections: 3.5 to 3.7)	

DISTRIBUTION OF MARKS: THEORY 90% AND PROBLEMS 10%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	I.N.	Topics in	Wiley Eastern Ltd, New	1989
	Herstein	Algebra	Delhi(2 nd Edition)	

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	S. Arumugam	Modern Algebra.	Scitech Publications,	2004
			Chennai	

2.	J.B.Fraleigh	A First Course in	Addison Wesley, Mass.	1987
		Algebra	(Indian Print) (3 rd	
			Edition)	
3.	Lloyd R.	Abstract Algebra	Tata McGraw Hill	2005
	Jaisingh and		Edition, New Delhi	
	Frank Ayres		(2 nd Edition),	
4.	M.L. Santiago	Modern Algebra	Tata McGraw Hill, New	2002
			Delhi.	

WEB RESOURCES

- 1. http://www.math.clemson.edu/~macaule/math4120-online.html
- 2. http://archives.math.utk.edu/topics/abstractAlgebra

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

SYLLABUS DESIGNER

Mrs. B. Vijayalakshmi, Assistant Professor of Mathematics.

ELECTIVE – II - VECTOR ANALYSIS

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
IV	21CMA4B	Elective-	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		II	4	60	4	60		

COURSE OBJECTIVES:

The students will be able to

- Deal with the concepts about differentiation and integration of vectors.
- Improve the basic knowledge of applications of Vector analysis

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level (K1-K4)
CO1	Acquire the knowledge about dot and cross product of vectors	K2
CO2	Understand the terms directional derivative and conservative force field	K2
CO3	Demonstrate the vector identities	К3
CO4	Apply the concepts of surface and volume integral in real life in a effective manner	К3
CO5	Verify the Stoke's and Green's theorem	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
C01	М	М	S	S	S	М
CO2	М	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT – I - DIFFERENTIAL VECTOR CALCULUS

Differentiation of a Vector – Differentiation Formulae – Differentiation of dot and Cross products.

UNIT – II -GRADIENT, DIVERGENCE AND CURL 12 Hours

Definition of gradient, divergent and curl – Directional derivative – Equations of the tangent plane and normal line, solenoidal and irrotational vectors, conservative force field – simple problems.

UNIT – III- VECTOR IDENTITIES

Proof of Vector Identities - Simple problems using vector identities.

UNIT – IV- VECTOR INTEGRATION

The line integral, surface integral and volume integral with their physical meaning – Statement of Gauss theorem and simple problems.(without proof).

UNIT -V- VECTOR INTEGRATION (CONT.) 12 Hours

Statement of Stoke's and Green's theorem (without proof) – Simple problems.

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS 90%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	P.R.Vittal	Vector analysis,	Margham	2004
		Analytical solid geometry	publications,	
		&sequences and series	Chennai	

12 Hours

12 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	P.Balasubramanian	Ancillary	McGraw Hill, New	1997
	and	Mathematics	Delhi	
	K.G.Subramanian	vol I&II		
2.	S.P.Rajagopalan	Allied	Vikaspublications,New	2005
	and R.Sattananthan	Mathematics	Delhi	
3.	P.Duraipandian	Allied	Muhilpublishers, Chennai	1977
	and	Mathematics		
	S.Udayabaskaran	volume I & II		

WEB RESOURCES

- 1. https://www.whitman.edu/mathematics/calculus_online/chapter16.html
- 2. https://www.brighthubengineering.com/machine-design/74224-understanding-vectoranalysis/

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

Dr. M. Kasthuri, Assistant Professor of Mathematics

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
IV	21SMA4A	Skill	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	-	2
		Based	2	30	2	30		
		Subject –						
		II						

COURSE OBJECTIVES:

The students will be able to

- Understand the collection, classification, tabulation and diagrammatic representation of data.
- Use statistical tools in business and arrive at possible inferences relating to population under study.
- Expertise the novel applications of R language and give them a hands on experience of working with data.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Acquire basic knowledge of collection, classification, tabulation and diagrammatic representation of data.	K1
CO2	Learn Index numbers and Methods of constructing Index numbers	K2
CO3	Study the behaviour of the variable and predict the behaviour in future	K2
CO4	Compares actual data with the predicted data	K3
CO5	Apply R language to import data and visualize the data	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING OF PROGRAM OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	М	S	М	S
CO2	S	S	М	S	S	S
CO3	S	S	S	S	S	S
CO4	S	S	S	S	S	S
CO5	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

UNIT – I: COLLECTION, CLASSIFICATION AND DIAGRAMMATIC REPRESENTATION OF DATA 6 Hours

Introduction - Collection of data – Classification and Tabulation - Diagrammatic Representation (Text Book 1: Chapter 1 to 4)

UNIT – II: INDEX NUMBERS

Index Numbers: Definition – Characteristics – Uses – General Problems in the construction of Index Numbers - Unweighted Averages of Relatives Methods – Weighted Aggregatives Methods – Weighted Averages of Relatives Methods – Calculations – Tests of Consistency and Adequacy - Circular Test - Fixed Base – Chain Base (Text Book 2: Chapter 10 (Page No. 444 to 466))

UNIT – III: INDEX NUMBERS AND ANALYSIS OF TIME SERIES 6 Hours

Index Numbers: Cost of Living Index Number – Deflating – Base Shifting – Splicing – Wholesale Price Index. Analysis of Time Series: Components — Secular Trend - Seasonal variation – Cyclical variation – Measures of trend (Text Book 2: Chapter 10, 14 (Page No. 467 to 488, Page No. 579 to 583))

UNIT - IV: ANALYSIS OF TIME SERIES

Secular Trend– Graphic Method – Method of Semi-average – Method of Moving Averages, -Method of least squares – Problems, Merits and Demerits (Text Book 2: Chapter 14 (Page No. 583 to 601))

UNIT - V: BASIC CONCEPTS IN R

Assignment of values, Character, Vector arithmetic, Understanding Data types, importing/exporting data - Computation of tables and graphical representation in R: plot, pie chart, box plot, generating graphs from imported data.

DISTRIBUTION OF MARKS: THEORY 30% AND PROBLEMS 70%

6 Hours

6 Hours

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	P.R. Vittal (Unit I)	Business Mathematics and Statistics	Margham Publishers	2011
2.	P.A. Navnitham (Unit II to IV)	Business Mathematics and Statistics	Jai Publishers, Trichi	2011
3.	Joseph Adler (Unit V)	R in a Nutshell A Desktop Quick Reference	O'Reilly	2010
4.	Mark Gardener (Unit V)	Beginning R The Statistical Programming Language	John Wiley & Sons, Inc	2012

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	S.S.Chadha,	Business	S.Chand&	1996
	R.N.Agarwal	Mathematics	Company Ltd,	
			Ram Nagar, New	
			Delhi	
2.	Sundaresan	An introduction to	Sultan Chand &	1988
	and Jayseelan	Business	Company, New	
		Mathematics	Delhi	
3.	S.P.Gupta	Elementary	Sultan Chand	2005
		Statistical Methods	&Sons, New	
			Delhi	
4.	S.C.Gupta and	Fundamentals of	Sultan Chand &	2007
	V.K.Kapoor	Statistics	Sons, New Delhi	
5.	Joseph Adler	R in a Nutshell A	O'reilly	2010
		Desktop Quick		
		Reference		

WEB RESOURCES

- 1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-mg23/
- 2. http://www.r-tutor.com/elementary-statistics
- 3. https://www.r-project.org/
- 4. https://www.r-statistics.com/

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations
- 6. Hands on training in Computer Lab

SYLLABUS DESIGNER

Mrs. G. VinuPriya, Head and Assistant Professor of Mathematics

NON MAJOR -- II - FUNCTIONAL STATISTICS

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
IV	21NMA4A	Non	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	-	2
		Major –II	2	30	2	30		

COURSE OBJECTIVES:

The students will be able to

- Understand the fundamental concepts in Statistics and develop the skills in computing the statistical measures for the undergraduate students of other departments.
- Concentrate on pertinent and concrete examples.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO		Knowledge
Number	CO Statement	Level
		(K1-K4)
CO1	Learn about types of sets and the operations	K1
CO2	Understand permutation and combination	K2
CO3	Acquire basic knowledge of probability	K2
CO4	Calculate various statistical measures	К3
CO5	Apply statistical tools in various fields	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING OF PROGRAM OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	S	S	М	S	S
CO2	S	М	S	S	S	S
CO3	S	S	S	S	S	S
CO4	S	М	S	S	S	S
CO5	S	М	S	S	S	S

S- Strong; M-Medium; L-Low

UNIT -I: SET THEORY

Definition - Subsets - Power sets - Equality of sets - Finite and Infinite sets - Set operations - De-Morgan's laws(without proof) - Distributive tables - Cartesian products – Simple problems.

(Text Book 1: Chapter 1)

UNIT -II PERMUTATION AND COMBINATION

Properties of nPr and nCr (no derivation), Cyclic permutation – problems based on these types.

UNIT –III: PROBABILITY THEORY

Definition of Mutually Exclusive events, Exhaustive events, Equally likely events, Independent events, Sample Space, Probability, Axioms of Probability – Addition theorem(without proof) – Multiplication theorem on probability(without proof), Conditional probability (No derivation) – Simple Problems.

UNIT – IV: MEASURES OF AVERAGES	6 Hours
Arithmetic Mean - Median – Mode – Simple problems.	
Unit – V: MEASURES OF DISPERSION	6 Hours

Range, Quartile Deviation, Variance, Standard Deviation – problems.

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS: 90%

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	P.R. Vittal	Business Mathematics	Margham	2011
	(Unit I to V)	and Statistics	Publishers	
2.	P.A. Navnitham	Business Mathematics	Jai Publishers,	2003
	(Unit II to V)	and Statistics	Trichy	

6 Hours

6 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	S.P.Gupta&P.K	Business Mathematics	Sultan Chand &	2013
	.Gupta	and Statistics	Sons	
2.	S.S.Chadha,	Business Mathematics	S.Chand&Compa	1996
	R.N.Agarwal		ny Ltd, Ram	
			Nagar, New Delhi	
3.	Sundaresan and	An introduction to	Sultan Chand &	1988
	Jayseelan	Business Mathematics	Company, New	
			Delhi	
4.	S.P.Gupta	Elementary Statistical	Sultan Chand	2005
		Methods	&Sons, New	
			Delhi	
5.	S.C.Gupta and	Fundamentals of	Sultan Chand &	2007
	V.K.Kapoor	Statistics	Sons, New Delhi	

WEB RESOURCES

- 1.https://nptel.ac.in/courses/111/107/111107058/
- 2. https://nptel.ac.in/courses/111/105/111105041/
- 3. https://www.khanacademy.org/math/statistics-probability

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations

SYLLABUS DESIGNER

Mrs. G. VinuPriya, Head and Assistant Professor of Mathematics

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
V	21CMA5A	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
		paper –	6	90	6	90		
		VII						

CORE PAPER – VII - LINEAR ALGEBRA

COURSE OBJECTIVES:

The students will be able to

- Demonstrate competence with the basic ideas of linear algebra including concepts of linear systems, independence, theory of matrices, trace and transpose.
- Study the Algebraic structures of Vector Spaces and Linear Transformation

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Understand the concepts of Vector space	К2
CO2	Compute inner products and determine orthogonality on Vector spaces	К2
CO3	Prove theorems on linear transformations and find the characteristic root	К3
CO4	Understand Triangular form and solve related problems	K3
CO5	Apply the trace and transpose on linear systems	К3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	М	М	S	S	S	М
CO2	М	S	М	М	S	S
CO3	S	М	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT – I: VECTOR SPACES

Definition and examples – Linear dependent and independence.Related Theorems – Simple Problems.

(Chapter – 4: Sections 4.1, 4.2)

UNIT – II: VECTOR SPACES (CONTD.)

Dual space – Inner Product spaces – Definitions – Examples - Theorems – Simple Problems. (Chapter – 4: Sections 4.3, 4.4)

UNIT – III: LINEAR TRANSFORMATION

Algebra of linear transformations – Characteristic roots - Definitions – Examples-Related Theorems – Simple Problems. (Chapter – 6: Sections 6.1, 6.2)

UNIT – IV: LINEAR TRANSFORMATION (CONTD.) 18 Hours

Matrices, Canonical forms: Triangular forms - Definitions – Examples - Theorems – Simple Problems.

(Chapter – 6: Sections 6.3, 6.4)

UNIT – V: LINEAR TRANSFORMATION (CONTD.) 18 Hours

Trace and Transpose, Determinants - Theorems - Simple Problems.

(Chapter – 6: Sections 6.8, 6.9)

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS 20%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	I.N.Herstein.	Topics in	Wiley Eastern	1989
		Algebra	Ltd. New Delhi	

18 Hours

18 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	Surjeet Singh and	Modern algebra	Vikas Publishing	1982
	QaziZameeruddin		House Pvt. Ltd. New	
			Delhi	
2	J.B.Fraleigh	A First Course in	Addison Wesley,	1987
		Algebra (3 rd	Mass. (Indian Print)	
		Edition)		
3	M.L. Santiago	Modern Algebra	Tata McGraw Hill,	2002
			New Delhi	
4	S. Arumugam	Modern Algebra	Scitech Publications,	2004
			Chennai.	
5	S. Lipschutz	Beginning Linear	Tata McGraw Hill	2005
		Algebra	Edition, New Delhi.	

WEB RESOURCES

1.https://marinazahara22.files.wordpress.com/2013/10/i-n-herstein-topics-in-algebra-2ndedition-1975-wiley-international-editions-john-wiley-and-sons-wie-1975.pdf 2. https://www.khanacademy.org/math/linear-algebra

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

Mrs. G. Vinu Priya, Head and Assistant Professor of Mathematics

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
V	21CM	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
	A5B	paper – VIII	6	90	6	90		

CORE PAPER - VIII - REAL ANALYSIS-I

COURSE OBJECTIVES:

The students will be able to

- Focus on the proofs of basic theorems in Real analysis.
- Establish the proofs, understand new concepts related to real valued functions.
- Learn the concepts of limits and Continuity

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Recognize the terminology Functions, Real valued functions, Equivalence, countability and Real numbers, least upper bound.	K2
CO2	Prove standard theorems on Sequences	K2
CO3	Learn the elementary concepts and basic ideas involved in operations on convergent sequence, divergent sequence and Cauchy sequence and also to distinguish conditional and absolute convergent.	К3
CO4	Demonstrate limit of a function on the real line, Metric space and limits in Metric space.	К3
CO5	Explain Continuous functions, functions continuous at a point on a real line, reformulation and continuous on a metric space.	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAM ME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	S
CO2	S	S	М	М	М	S
CO3	S	S	М	М	S	S
CO4	S	М	S	S	М	S
CO5	S	S	S	М	М	S

S- Strong M-Medium L-Low

UNIT – I: REAL VALUED FUNCTIONS

Functions, Real valued functions, Equivalence, countability and Real numbers, least upper bound.

(Chapter: 1.4 to 1.7)

UNIT – II: SEQUENCE

Sequence – definition – subsequence – limit of a sequence – convergent – divergent sequence, bounded sequence monotone – sequence – series with non-negative terms. (Chapter: 2.1 to 2.6)

UNIT – III: SEQUENCE(Contd.) AND SERIES

Operations on convergent sequence – operations on divergent sequence – Cauchy sequence. Series: Convergence and divergence – Series with non-negative terms – conditional and absolute convergence.

(Chapter: 2.7, 2.8, 2.10 and Chapter: 3.1, 3.2, 3.4)

UNIT - IV: LIMITS AND METRIC SPACE

Limit of a function on the real line – Metric space – Limits in Metric space. (Chapter: 4.1 to 4.3)

UNIT – V: CONTINUOUS FUNCTIONS

Functions continuous at a point on a real line – Reformulation – continuous on a metric space - Open sets, closed sets.

(Chapter: 5.1 to 5.5)

DISTRIBUTION OF MARKS: THEORY 90% AND PROBLEMS 10%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	R.Goldberg	Methods of	Oxford and IBH	1970
		Real Analysis	Publishing co., New Delhi	

18 Hours

18 Hours

18 Hours

18 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	Tom M. Apostol	Mathematical	Addison-Wesley,	1974
		Analysis	New York	
2.	Bartie,	Real Analysis	John Willey &sons	1976
	R.GandShebert		Inc., New York	
3.	S.C. Malik and	Mathematical	Willey Eastern	1991
	SavitaArora,	Analysis	Limited,New Delhi.	
4.	Sanjay Arora	Introduction to	SatyaPrakashan,	1991
	and BansiLal,	Real Analysis,	New Delhi.	

WEB RESOURCES

- 1. https://www.scribd.com/document/422568997/Goldberg-Method-of-Real-Analysis
- 2. https://www.goodreads.com/book/show/28381581-methods-of-real-analysis

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

SYLLABUS DESIGNER

Mrs. B. Vijayalakshmi, Assistant Professor of Mathematics.

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
V	21CMA5C	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
		paper – IX	6	90	6	90		

CORE PAPER –IX -STATICS

COURSE OBJECTIVES:

The students will be able to

- Understand the basic concepts of forces, moments, couple and friction, laws of friction, catenary and centre of gravity.
- Focus on the development of skills in formation of suitable mathematical models and problems solving techniques.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Obtain adequate information on forces and moments and generalize the concepts of moments	K2
CO2	Get a basic coverage of coplanar forces, equilibrium of a rigid body, develop the skills in solving many practical problems	K3
CO3	Understand the basic concepts of friction and its laws and to solve many simple problems	K2
CO4	Acquire knowledge on intrinsic equation and Cartesian equation on Catenary & its properties	K3
CO5	Get a wide knowledge about centre of gravity, find the mass centre of certain simple systems which can be found by using integration or without using integration	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING OF COURSE OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	М	S	S
CO2	S	М	S	S	М	М
CO3	S	М	S	М	М	S
CO4	S	S	М	М	S	М
CO5	S	М	S	S	S	S

S-Strong M-Medium L-Low

UNIT - I: FORCES AND MOMENTS

Parallelogram Law of forces – Triangle Law of forces and its converse – Polygon Law of forces - Lami's theorem and its converse - Parallel forces and moment - Varignon's theorem on moments - Generalized theorem on moments. (Sections: 2.1 - 2.2, 3.1, 4.1 - 4.4)

UNIT – II: COUPLES

Arm and Axis of couple – Moment of a couple – Equilibrium of two couples – Couples in parallel planes - coplanar forces - Equilibrium of a rigid body: Three forces acting on a rigid body - Conditions of Equilibrium - Problems. (Section: 4.6 - 4.7)

UNIT – III: FRICTION

Basic concepts - Laws of friction - Equilibrium of a particle on a rough inclined plane under any force - Simple Problems.

(Section: 5.2)

UNIT - IV: CATENARY

Intrinsic equation and Cartesian equation of the common catenary - properties of catenary - Sag of telegraph wireless (tightly stretched wires) - Simple Problems. (Section: 9.1)

UNIT – V: CENTRE OF GRAVITY (C.G) **18 Hours** CG of particles lying in one plane – CG of plane area – CG of an arc – CG of solid of

revolution - CG of surface of revolution - CG when density varies.

(Section: 6.1 - 6.2)

DISTRIBUTION OF MARKS: THEORY 40% AND PROBLEMS 60%

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

18 Hours

18 Hours

18 Hours

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	P. Duraipandian,	Mechanics	S. Chand & Co.	2006
	LaxmiDuraipandian and		New Delhi.	
	MuthamizhJayapragasam			

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	A.V. Dharmapadam	Mechanics	S. Viswanathan	1991
			Printers &	
			Publishers Chennai	
2	S.L. Loney	Elements of	Macmillian India,	1982
		Statics	Delhi	
3	M.K. Venkataraman	Statics	Agasthier Book	1990
			Depot, Trichy	

WEB RESOURCES

- 1. https://web.itu.edu.tr/~ustunda1/course/restlectures.pdf
- 2. https://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Forces.pdf
- 3. https://engineering.purdue.edu/~aprakas/CE297/CE297-Ch3.pdf
- 4. http://isdl.cau.ac.kr/education.data/statics/ch8.pdf

SYLLABUS DESIGNER

Mrs. C. Revathi, Assistant Professor of Mathematics

Semester	Subject Code	Category	Lect	ure	The	eory	Practical	Credit s
V	21CMA5D	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		paper –X	5	75	5	75		

CORE PAPER -X -OPERATIONS RESEARCH - I

COURSE OBJECTIVES:

The students will be able to

- Develop computational skills and logical thinking in formulating Industry oriented problems as a mathematical problem and finding solutions to these problems.
- Solve the formulation techniques and optimization techniques of socially relevant problems.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Understand about operations research and the formation of Linear Programming Problem	K2
CO2	Solve Linear Programming problem using Big – M method and Duality	К3
CO3	Find optimum solutions for transportation problems	K3
CO4	Assign each source to each destination using assignment problems	К3
CO5	Analyze the results for various real life mathematical problems using inventory models	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	М
CO2	М	S	S	М	М	S
CO3	S	S	М	S	М	М
CO4	S	М	S	М	М	S
CO5	S	S	М	М	S	М

S- Strong M-Medium L-Low

UNIT I: LINEAR PROGRAMMING PROBLEM

Introduction to Operations Research – General Linear Programming Problem – Mathematical formulation of LPP – Graphical solution – Simplex Algorithm – Simple Problems. (Chapter 1: Sections 1.1 to 1.23 Chapter 2: Sections 2.6 to 2.16)

UNIT II: ARTIFICIAL VARIABLE TECHNIQUE AND DUALITY **15 Hours**

Artificial Variable Technique – Big – M method – Duality – Primal and Dual relation – Simple Problems. (Chapter 2: Sections 2.17 (2.17-1) and 2.18)

UNIT III: TRANSPORTATION PROBLEM

Transportation problem - Mathematical formulation - Initial Basic Feasible Solution - The Transportation Algorithm (MODI Method) – Unbalanced transportation problem. (Chapter 3: Sections 3.1 to 3.7)

UNIT IV: ASSIGNMENT PROBLEM

Assignment problem – The assignment algorithm (The Hungarian Assignment Method) – Unbalanced Assignmentproblems – Profit Maximization Problems. (Chapter 4: Sections 4.1 to 4.7)

UNIT V: INVENTORY MODELS

Inventory models – EOQ model – (a) Uniform demand rate, Infinite production rate with no shortages, (b) Uniform demand rate, Finite production rate with no shortages – Simple Problems.

(Chapter 12: Sections 12.1 to 12.5)

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS 90% TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

15 Hours

15 Hours

15 Hours

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	Gupta P.K.	Problems in	Sultan Chand &	2000
	and Hira D.S.	Operations Research	Sons, New Delhi	

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	KantiSwaroop	Problems in	Sultan Chand &	2002
	and Gupta P.K.	Operations	Sons, New Delhi	
	Manmohan	Research		
2.	H. A. Taha	Operations	Macmillan	2003
		Research	Publishing Company,	
			New York	
3.	P. R. Vittal	Operations	Margham	2003
		Research	Publications,	
			Chennai	
4.	J. K. Sharma	Operations	Macmillan, Delhi	2001
		Research :		
		Theory and		
		Applications		

WEB RESOURCES

- 1. https://www.maths.unp.ac.za/coursework/MATH331/2012/linearprogramming.pdf
- 2. https://towardsdatascience.com/operations-research-in-r-transportation-problem-1df59961b2ad

SYLLABUS DESIGNER

Dr. M. Kasthuri, Assistant Professor of Mathematics

ELECTIVE –III -GRAPH THEORY

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
V	21CMA5E	Elective	Hrs/Week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		-III	5	75	5	75		

COURSE OBJECTIVES:

The students will be able to

- Understand the fundamental concepts of graph theory such as paths, trees in a graph, Euler graphs and Hamiltonian graphs
- Apply the concepts of graph theory in relevant fields and to improve the proof writing skills.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Understand the basic definitions and properties of graphs	K2
CO2	Find adjacency and incidence matrices	К3
CO3	Prove connectivity theorems	К3
CO4	Describe some basic algorithms for Eulerian graphs, Hamiltonian graphs and Planar graph.	К3
CO5	Develop mathematical models using graph theory	K3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	S
CO2	М	S	S	S	М	S
CO3	S	М	S	М	S	М
CO4	М	S	S	S	S	S
CO5	S	S	М	S	М	S

S- Strong: M- Medium: L- Low

60

Unit I :GRAPHS AND SUBGRAPHS

Graphs, Subgraphs, degree of a Vertex, isomorphism of graphs, walks, trails, paths.

(Chapter 2: Sections: 2.0 to 2.7

Chapter 4: Sections: 4.1)

Unit II:OPERATIONS ON GRAPHS

Adjacency and incidence matrices, Operations on graphs, Simple problems. (Chapter 2: Sections: 2.8 to 2.9)

Unit III: CONNECTIVITY

Connectedness and components, cut vertex, bridge, block, connectivity theorems and simple problems.

(Chapter 4: Sections: 4.2 to 4.4)

Unit IV: EULERIAN GRAPHS, HAMILTONIAN GRAPHSAND TREES 15 Hours

Eulerian graphs and Hamiltonian graphs, trees, theorems and simple problems.

(Chapter 5: Sections: 5.0 to 5.2

Chapter 6: Sections: 6.0 to 6.2)

Unit V: PLANAR GRAPHS

Planar graphs – Definition and properties, colourability, chromatic number and chromatic index.

(Chapter 8: Sections: 8.0 to 8.3)

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS: 20%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	S. Arumugam and S.	Invitation to	Publications India	
	Ramachandran	Graph Theory	Pvt Ltd, 7/3C,	2015
			Madley Road, T -	
			Nagar, Chennai – 17	

15 Hours

15 Hours

15 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE PUBLISHER		YEAR OF
				PUBLICATION
1.	J.A Bondy and	Graph theory and	McMillan	1976
	USR Murthy	applications		
2.	J.Clark and D.A	A first look at	Allied publishers	1995
	Holton	Graph theory		
3.	R.Gould	Graph theory	Benjamin /	1989
			Cummings	
4.	A.Gibbons	Algorithmic	Cambridge University	1989
		Graph Theory	Press	
5.	R.J. Wilson	Introduction to	Pearson Education	2004
		Graph Theory		
6.	S.A. Choudum	A First Course in	MacMillan India Ltd	1987
		Graph Theory		

WEB RESOURCES

1.https://iversity.org/blog/introduction-graph-theory/ 2.http://www.hamilton.ie/ollie/Downloads/Graph.pdf

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5.PPT** Presentations

SYLLABUS DESIGNER

Ms.R.Ramya, Assistant Professor of Mathematics.

SKILL BASED SUBJECT –III NUMERICAL METHODS

Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
V	21SMA5A	Skill	Hrs/Week	Hrs/Sem	Hrs/week	Hrs/Sem	0	2
		subject- III	2	30	2	30		

COURSE OBJECTIVES:

The students will be able to

- Understand the basic methods for forming difference table and learn the essence of interpolation techniques
- Solve algebraic equations, system of linear equations and to find numerical differentiation, numerical integration and numerical solution of ordinary differential equations.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Find the solution of algebraic and transcendental equation using different methods	К2
CO2	Understand and apply the concepts of finite differences	K3
CO3	Calculate numerical differentiation and integration	K3
CO4	Evaluate the problems on linear systems	K3
CO5	Acquire the knowledge of numerical Solution of ordinary differential equations	К3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	М	S	S	М
CO2	S	М	S	S	S	S
CO3	S	М	М	М	S	М
CO4	S	М	S	S	М	S
CO5	S	М	S	S	М	М

S- Strong: M- Medium: L- Low

UNIT I: SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATION

6 Hours

6

Solution of Algebraic and Transcendental equation - Iteration Method, Method of False position, Newton Raphson Method – Simple Problems.

(Section SE.4 – SE.36)

UNIT II: FINITE DIFFERENCES

Hours

Finite differences-Forward differences, Backward difference, Newton's formula for interpolation. Lagrange's interpolation formula - Simple Problems.

(Section IA – IA.4, IA.31 to IA.34)

UNIT III- NUMERICAL DIFFERENTIATION AND INTEGRATION 6 Hours

Numerical differentiation and integration – Numerical differentiation- Errors in Numerical Differentiation-Differentiation Formulae with function values, Numerical integration - Trapezoidal Rule and Simpson's Rule - Simple Problems.

(Section D1.1- D1.6, D1.20-D1.24)

UNIT IV - SOLUTION OF LINEAR SYSTEMS

Solution of linear Systems – Direct Methods –Gaussian Elimination method, Gauss Jordan method - Simple Problems.

(Section SE. 42-SE.44)

UNIT V- NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 6 Hours

Numerical Solution of ordinary differential equations – Solution by Taylor Series, Picard's method of Successive approximations, Euler method, Runge- Kutta method (Only D.E. of II Order) - Simple Problems.

(Section OD.1- OD.22, OD.31, OD:45-61)

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	S.Kalavathy	Numerical Methods	Vijay Nicole	2010
	and M.Joice		Imprints Private	
	Punitha		Limited, Chennai	

6 Hour

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1	M.K Jain,	Numerical Methods	New age	2012
	S.R.K Iyengar,	for Scientific and	International	
	and R.K Jain	Engineering	Publisher, India	
		Computation		
2.	E.	Numerical Methods	Tata McGraw	2004
	Balagurusamy		Hill Publishing	
			Company, New	
			Delhi	
3.	P.Kandasamy,	Numerical Methods	S.Chand&	1997
	K.Thilagavathi,		Company Ltd,	
	K.Gunavathi		New Delhi	
4.	A.Singaravelu	Numerical Methods	Meenakshi	2002
			Publications,	
			Chennai	

WEB RESOURCES

- 1. http://nptel.ac.in/courses/122102009/,
- $2. \ http://www.math.ust.hk/~machas/numerical-methods.pdf$

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations

SYLLABUS DESIGNER

Dr. N. Nithyapriya, Assistant Professor of Mathematics

Semester	Subject	Category	Lecture		Theory		Practical	Credit
	Code							S
VI	21CM	Core Paper	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
	A6A	– XI	5	75	5	75		

CORE PAPER – XI - REAL ANALYSIS II

COURSE OBJECTIVES:

The students will be able to

- Develop the understanding of point wise and uniform convergence of sequence and series of functions.
- Enhance the mathematical maturity and to work comfortably with concepts.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Acquire the comprehensive knowledge about Connected and Bounded sets	K2
CO2	Understand the terms Complete metric space and Compactness	K2
CO3	Prove standard theorems in Riemann integral	K3
CO4	Apply the concept of Rolle's theorem in real life	K3
CO5	Analyze the Taylor's formula with different forms of remainder	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITHPROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
C01	S	S	S	S	S	М
CO2	М	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT-I-CONNECTEDNESS

Connected sets – Bounded sets and Totally Bounded sets. (Chapter 6 : Section 6.1 - 6.3)

UNIT- II - COMPLETE METRIC SPACESAND COMPACTNESS 15 Hours

Complete metric spaces - Compact metric spaces – Continuous functions on compact metric spaces – Continuity of Inverse Functions – Uniform Continuity. (Chapter 6 : Section 6.4 – 6.8)

UNIT- III- RIEMANN INTEGRATION

The Sets of measure zero - Definition of the Riemann Integral - Properties of the Riemann integral – Derivatives. (Chapter 7 : Section 7.1 – 7.5 [omit section 7.3])

UNIT - IV- RIEMANN INTEGRATION (contd.) 15 Hours

Rolle's Theorem and the law of the Mean – Fundamental theorem of calculus – Improper Integrals

(Chapter 7 : Section 7.6 – 7.9)

UNIT- V- SEQUENCES AND SERIES OF FUNCTIONS 15 Hours

Taylor's Theorem: Taylor's Formula with Different Forms of Remainder – The Binomial Theorem – L'Hospital Rule.

(Chapter 8: Section 8.5 - 8.7 [omit section 8.1 - 8.4])

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS 20% TEXT BOOK

S.NOAUTHORSTITLEPUBLISHERSYEAR OF
PUBLICATION1.R.GoldbergMethods of Real
AnalysisOxford and IBH
Publishing Co,
New Delhi1970

15 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Tom M. Apostol	Mathematical Analysis	Addison-Wesley, New York	1974
2.	Bartle, R.G. and Shebert	Real Analysis	John Willey &sons Inc., New York	1976
3.	S.C.Malik and Savita Arora.	Mathematical analysis	WilleyEasternLimited,NewDelhi	1991
4.	Sanjay Arora and BansiLal	Introduction to Real Analysis	SatyaPrakasam,New Delhi	1991

WEB RESOURCES

1. https://blogs.scientificamerican.com/roots-of-unity/what-does-compactness-really-mean/

2. https://mathworld.wolfram.com/Analysis.html

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

Dr. M. Devi, Assistant Professor of Mathematics
CORE PAPER – XII – DYNAMICS

Semester	Subject	Category	Lecture		Theory		Practical	Credit
	Code							S
VI	21CM	Core paper	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
	A6B	– XII	5	75	5	75		

COURSE OBJECTIVES:

The students will be able to

- Understand the concepts of Kinematics, Simple Harmonic Motion, Projectiles, Central orbits and Moment of inertia.
- Enhance the mathematical maturity and provide model for some real life problems

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Acquire the knowledge about resultant and relative velocity	K2
CO2	Understand the terms projectile, trajectory and range	K2
CO3	Construct the mathematical equations for Simple Harmonic Motion	К3
CO4	Apply the concept of central orbit and Kepler's Laws of planetary motion problems in real life	К3
CO5	Determine the moment of inertia of simple geometric shapes	К3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	S	S	М	М
CO2	S	S	S	М	S	S
CO3	S	S	S	М	S	М
CO4	S	М	S	М	М	S
CO5	S	S	S	S	М	S

S- Strong: M- Medium: L- Low

UNIT -I- KINEMATICS

Velocity–Resultant velocity – Relative velocity – Acceleration – Rectilinear motion – Rectilinear Motion with a Constant Acceleration – Velocity and Acceleration in a coplanar motion – Angular Velocity – Relative Angular Velocity – Problems. (Chapter 1: Sections 1.1 – 1.4)

UNIT –II- PROJECTILE

Force on a Projectile – Nature of trajectory – Results pertaining to the Motion of Projectile – maximum Horizontal range for a given Speed and Range – Projectile projected horizontally - Projectile projected on an inclined plane - Maximum range on an inclined Plane - Problems. (Chapter 13: Sections 13.1 – 13.2)

UNIT- III- RECTILINEAR MOTION UNDER VARYING FORCE 15 Hours

Simple Harmonic motion along a Horizontal line –Simple Harmonic motion along a vertical line. Impact-Direct oblique of two smooth spheres- Impulse of kinetic energy due to impact – Simple Problems.

(Chapter 12: Sections 12.1 – 12.3, Chapter 14: Sections 14.1 – 14.5)

UNIT-IV-CENTRAL ORBIT

Central Force and Central Orbit-Equation of a central orbit - Law of force and speed for a given orbit-Method to find central orbit-conic as a central orbit-Kepler's Laws of planetary motion, Problems.

(Chapter 16: Sections 16.1 – 16.3)

UNIT-V-MOMENT OF INERTIA

Theorems of parallel and perpendicular axis-Moment of Inertia of rod, triangular lamina, circular lamina, elliptic lamina, circular ring, right circular cone and sphere (hollow and solid), Problems.

(Chapter 17: Section 17.1)

DISTRIBUTION OF MARKS: THEORY 30% AND PROBLEMS 70%

15 Hours

15 Hours

15 Hours

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	P. Duraipandian,	Mechanics	S. Chand & Co.	2006
	LaxmiDuraipandian and		New Delhi	
	MuthamizhJayapragasam			

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	A.V.Dharmapadam	Mechanics	S. Viswanathan and Co,Chennai	1991
2.	S.L. Loney	Elements of Dynamics	Macmillian India, Delhi	1982
3.	M.K. Venkataraman	Dynamics	Agasthier Book Depot, Trichy	1990

WEB RESOURCES

- 1. https://revisionmaths.com/advanced-level-maths-revision/mechanics/projectiles
- 2. <u>https://dynref.engr.illinois.edu/rem.html</u>

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- **5**.PPT Presentations

SYLLABUS DESIGNER

Dr. M. Devi, Assistant Professor of Mathematics

Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
VI	21CMA6C	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	4
		paper – XIII	5	75	5	75		

CORE PAPER – XIII-COMPLEX ANALYSIS

COURSE OBJECTIVES:

The students will be able to

- Learn Complex number System, Complex function and Complex integration.
- Gain knowledge about the Origin, properties and application of Complex numbers and Complex functions.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Compute sums, products, quotients, conjugate, modulus and argument of complex numbers.	K2
CO2	Conceive the concepts of analytic functions and will be familiar with the elementary complex functions and their properties.	К3
CO3	Evaluate complex contour integrals by the fundamental theorems and apply the Cauchy integral formula.	K3
CO4	Apply the theory into application of the power series expansion of analytic functions.	К3
CO5	Evaluate and analyze complex integrals using the residue theorem.	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	S	S
CO2	S	М	S	S	М	S
CO3	S	S	М	М	S	S
CO4	S	S	S	S	S	S
CO5	S	М	М	М	М	S

S- Strong M - Medium L - Low

UNIT – I COMPLEX NUMBERS ANDANALYTIC FUNCTIONS

Definition of Function of a Complex Variable – Mappings – Limits, Continuity – Derivatives and Differentiation Formula – Cauchy – Riemann Equations – Properties of Analytic Functions – Necessary and Sufficient Conditions for Analytic Functions – Harmonic Functions – Determination of Harmonic Conjugate and Analytic Function. (Text Book 1: Chapter 1: Sections :1.0- 1.5 ,1.8 and 1.9 Chapter 2: Sections: 2.0 -2.9)

UNIT – II MAPPING

Bilinear Transformation and Some Special Bilinear Transformation -Conformal Mapping -

The transformations w = az+b, w=1/z, $w=z^2$, $w=\sqrt{z}$, $w=e^z$.

(Text Book 1: Chapter 3: Sections: 3.0 - 3.5

Chapter 5: Sections: 5.0 - 5.3)

UNIT – III INTEGRALS

Contours – Line Integrals – Cauchy – Goursat's Theorem (without proof) Cauchy's Integral Formula – Derivatives of Analytic Functions – Maximum Modulus Theorem. (Text Book 1: Chapter 6: Sections :6.0 - 6.4)

UNIT – IV POWER SERIES

Taylor's and Laurent's Theorem – Singularities and Classification – Problems. (Text Book 2: Complex Variables and Applications Chapter 5: Sections : 51 – 56)

UNIT – V RESIDUES AND POLES

Residues – Cauchy's residue theorem – Simple problems. Evaluation of real integrals, Improper integrals involving sine & cosine functions. (Text Book 1: Chapter 8: Sections: 8.0 - 8.3)

DISTRIBUTION OF MARKS - THEORY 40% AND PROBLEMS 60%

TEXT	AUTHORS	TITLE	PUBLISHERS	YEAR OF
BOOKS				PUBLICATION
S.NO				
1.	S.Arumugam, A.	Complex	Scitech	2015
	Thangapandi Isaac,	Analysis	Publications	
	A. Somasundaram			
2.	R.V. Churchill and	Complex	McGraw Hill	1984
	J.W. Brown	Variables and	International Book	
		Applications	Co., Singapore.	

15 Hours

15 Hours

15 Hours

15 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	P.Duraipandian and	Complex	Emerald	1976
	LaxmiDuraipandian	Analysis.	Publishers, Chennai.	
2.	S.Ponnusamy	Foundations of	Narosha Publishing	2000
		Complex Analysis	House, New Delhi.	
3.	Murray R.Spiegel	Theory and	Tata McGraw Hill	2005
		Problems of	Edition, New	
		Complex Variable	Delhi.	

TEACHING METHODOLOGY

- 1. Class room teaching
- 2. Giving Assignments for all the units
- 3. Discussions
- 4. Home test

WEB SOURCES

- 1. http://www.freebookcentre.net/Mathematics/Complex-Analysis-Books.html
- 2. http://www.math.ku.dk/noter/filer/koman-12.pdf

SYLLABUS DESIGNER

Dr.T.Ranjani, Assistant Professor of Mathematics.

CORE PAPER – XIV - THEORY: PROGRAMMING IN C LANGUAGE

Semester	Subject Code	Category	Lecture		Theory		Practical	Credits
VI	21CMA6D	Core	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	-	3
		paper – XIV	5	75	5	75		

COURSE OBJECTIVES:

The students will be able to

- Learn about C Constants, Variables, Statements, Arrays, functions and various concepts of C Language.
- Develop programming skill in the Computer Language C.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Learn about C constants and Variables	K1
CO2	Explain about various operators in C Language, formatted input and output	K2
CO3	Learn about decision making statements and understand the reason why different constructs are available for iteration	K3
CO4	Develop C programs for arrays and user defined functions	K3
CO5	Understand structure, Unions and Pointers and to develop programs based on it.	K 3

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING OF PROGRAM OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	S	М	М	М	М
CO2	S	S	М	S	М	М
CO3	S	S	М	S	S	S
CO4	S	М	S	S	S	S
CO5	S	М	М	S	S	S

S- Strong; M-Medium; L-Low

75

UNIT – I : C CONSTANTS AND VARIABLES

C Constants, variables, Data-type, Declaration of variables, assigning values to variables. (Chapter 2: Sections 2.5 to 2.8, 2.10)

UNIT – II : OPERATORS

Arithmetic, Relational, Logical, Assignment, Increment and decrement, Conditional, Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic operators, Formatted input and output. (Chapter 3: Sections 3.1 to 3.7, 3.10 to 3.12

Chapter 4: Sections 4.4 & 4.5)

UNIT - III: DECISION MAKING AND BRANCHING

Decision making with if, simple if, if else, Nesting of if - else, else - if ladder, switch statement, the ?: Operator, go to statement. Decision making and looping: while, do, for statement, Jumps in loops. (Chapter 5: Section 5.1 to 5.9 Chapter 6: Section 6.1 to 6.5)

UNIT – IV: ARRAYS AND USER-DEFINED FUNCTION 15 Hours

one- dimensional array, two - dimensional array, Initializing two - dimensional array, Multi - dimensional arrays. User - Defined Function: Need for User-defined function, Multifunction program, the form of C-Function, Return Value and their types. (Chapter 7: Sections 7.1 to 7.6 Chapter 9: Sections 9.1 to 9.6)

UNIT - V: STRUCTURES, UNIONS AND POINTERS

Structure definition, Declaring Structure Variables, Accessing Structure Members, Structure initialization, Comparison of structure variables, Arrays of structures, Arrays within structures, structure within structures, Unions

POINTERS:Understanding Pointers, Accessing the address of a variable, Declaring and initializing of pointers, accessing a variable through its pointer, Pointer expression. (Chapter 10: Sections 10.1 to 10.10, 10.12) Chapter 11: Sections 11.1 to 11.6, 11.8)

15 Hours

15 Hours

15 Hours

DISTRIBUTION OF MARKS: THEORY 80% AND PROBLEMS: 20%

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	E.Balagurusamy	Programming in ANSI C	Tata McGraw Hill Education	2010

REFERENCE BOOKS

S.N O	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	V. Rajaraman	Computer Programming in C	PHI learning Private	2019
2.	Herbert Schildt	Teach yourself C	McGraw-Hill Education	1997
3.	Mullish Cooper	The spirit of C	Jaico Publishers	1998
4.	YashavantKanetka r	Let us C	BPB Publications	2016
5.	Dr.P.Rizwan Ahmed	Programming in C	Margham Publications	2016

WEB RESOURCES

1.https://nptel.ac.in/courses/106/104/106104128/

- 2. https://nptel.ac.in/courses/106/105/106105171/
- 3. https://beginnersbook.com/2015/02/simple-c-programs/

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations

SYLLABUS DESIGNER

Mrs. G. VinuPriya, Head and Assistant Professor of Mathematics.

Semester	Subject Code	Category	Lecture		Theory	Practical		Credits
VI	21CMA61	Core Practical	Hrs/week 3	Hrs/Sem 45	0	Hrs/week 3	Hrs/Sem 45	2

CORE PRACTICAL: COMPUTER PRACTICAL IN C LANGUAGE

COURSE OBJECTIVES:

The students will be able to

• Develop strong logical thinking, to write error-free syntax codes, to master the debugging

techniques and to present the results in neat form in C Language for numerical methods.

• Solve problem numerically using C language

SYLLABUS

- 1. Assigning the ASCII value.
- 2. Square of numbers: Using for loop, while loop.
- 3. Square of numbers: do-while loop, goto statement
- 4. Characters between two given characters.
- 5. Number of vowels and consonants.
- 6. Three- dimensional matrix.
- 7. Addition of Matrices.
- 8. Multiplication of Matrices.
- 9. Prime number between two given numbers.
- 10. Fibonacci series
- 11. Factorial numbers
- 12. Power of a value.
- 13. Interchange sort.
- 14. Arithmetic Mean for raw data
- 15. Standard deviation for raw data
- 16. Student record.

DISTRIBUTION OF MARKS: PROBLEMS 100%

TEXT BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	Mullish Cooper	The spirit of C	Jaico Publishers	1998
2.	Herbert Schildt	Teach yourself C	McGraw-Hill Education	1997

REFERENCE BOOKS

S.N	AUTHORS	TITLE	PUBLISHERS	YEAR OF
0				PUBLICATIO
				Ν
1.	YashavantKanetka	Let us C	BPB Publications	2016
	r			
2.	Byron Gottfried	Programming with C,	McGraw-Hill	2006
		Schaum's Outlines	Education	
3.	Ashok N.	Programming in C	Pearson	2015
	Kamthane, Amit		Education India	
	Ashok Kamthane			

WEB RESOURCES

- 1. https://www.javatpoint.com/c-programming-language-tutorial
- 2. https://www.guru99.com/c-programming-tutorial.html

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Practical class in Computer Laboratory
- 3. PPT Presentations

SYLLABUS DESIGNER

Mrs. G. VinuPriya, Head and Assistant Professor of Mathematics

CORE PRACTICAL: COMPUTER PRACTICAL IN C LANGUAGE SCHEME OF VALUATION FOR PRACTICAL EXAMINATIONS

Internal assessment: 40 Marks External assessment: 60 marks Total: 100 marks

External assessment: 60 marks

Record : 10 Marks

Practical: 45 Marks

Viva : 5 Marks

Semester	Subject	Category	Lecture		Theory		Practical	Credits
	Code							
VI	21CMA6E	Elective	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	0	3
		-IV	5	75	5	75		

ELECTIVE -IV - OPERATIONS RESEARCH - II

COURSE OBJECTIVES:

The students will be able to

- Develop computational skill and logical thinking in formulating industry oriented problems as a mathematical problem and finding solution to these problems.
- Understand the mathematics of Information Theory at the basic level.
- Inculcate knowledge on maximize the profit and minimize the cost in every place.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Knowledge Level (K1-K4)
CO1	Provide basic knowledge on game theory and able to solve practical problems related to it.	K2
CO2	Find the optimum integer solution using Integer programming problem	К3
CO3	Expose the fundamentals of Queueing theory and steady state analysis	К3
CO4	Determine the sequences that minimizes the total elapsed time by sequencing problem	К3
CO5	Discuss the constructing a project network and its importance	K4

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze

MAPPING WITH PROGRAMME OUTCOMES:

COS	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	S	S	S	S
CO2	S	М	S	S	S	М
CO3	S	S	М	S	М	S
CO4	S	М	S	S	S	S
CO5	S	М	S	М	S	S

S- Strong M-Medium L-Low

(Sections: 14.3, 14.8 – 14.9, 14.12 – 14.13, 15)

DISTRIBUTION OF MARKS: THEORY 10% AND PROBLEMS 90%

TEACHING METHODOLOGY:

1. Class room teaching

(CPM) – PERT computations.

- 2. Giving Assignments for all units
- 3. Discussions
- 4. Home test
- 5. PPT presentation

UNIT V: NETWORK SCHEDULING BY CPM/PERT

UNIT IV: SEQUENCING PROBLEM

Sequencing problem – n jobs through two machines, n jobs through three machines – Graphical Method. (Sections: 5.1 - 5.4)

Network Scheduling by CPM/PERT - Project Network Diagram - Critical Path Method

(Sections: 10.1 - 10.9, Models I and IV)

UNIT II: INTEGER PROGRAMMING

Integer programming – Gomory's all I.P.P method. (Sections: 6.10.1 – 6.10.6)

UNIT I: GAME THEORY

Game theory - Two persons zero sum game - The Maximin and Minimax principle - Saddle points-Games without saddle points, mixed strategies - Dominance property. (Sections: 9.1 - 9.20)

UNIT III: QUEUING THEORY 15 Hours Queuing Theory – Basic concepts – Steady state analysis of M/M/1 system with finite and infinite capacities.

15 Hours

15 Hours

15 Hours

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Gupta P.K. and	Problems in	S.Chand&	2000
	Hira D.S	Operations	Co.,Delhi	
		Research		

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	J.K.Sharma	Operations	Macmillan, Delhi	2001
		Research :		
		Theory and		
		Applications		
2.	KantiSwaroop,	Problems in	Sultan Chand & Sons	2002
	Gupta P.K.	Operations		
	Manmohan,	Research		
3.	Ravindran A.,	Operations	John Wiley & Sons,	1987
	Philips D.T.	Research	New York.	
	and Solberg J.J.			
4.	Taha H.A	Operations	Macmillan Publishing	2003
		Research	Company, New York	
5.	Vittal P.R	Operations	MarghamPublications,	2003
		Research	Chennai	
6.	Venkatesan S.J	Operations	J.S Publishers,	-
		Research	Cheyyar	

WEB RESOURCES

- 1. https://notendur.hi.is/kth93/3.20.pdf
- 2. https://shodhganga.inflibnet.ac.in/bitstream/10603/30974/4/06_chapter%204.pdf
- 3. https://ocw.ehu.eus/pluginfile.php/8171/mod_resource/content/1/6_Integer_Slides.pdf
- 4. https://thalis.math.upatras.gr/~tsantas/DownLoadFiles/Hillier&Lieberman_7thedition_Chapter10.pdf

SYLLABUS DESIGNER

Mrs. C. Revathi, Assistant Professor of Mathematics

SKILL BASED SUBJECT-IV -MATHEMATICAL MODELLING WITH SPREADSHEET

ĺ	Semester	Subject	Category	Lecture		Theory		Practical	Credits
		Code							
	VI	21SMA6A	Skill	Hrs/week	Hrs/Sem	Hrs/week	Hrs/Sem	-	2
			Based	2	30	2	30		
			Subject –						
			IV						

COURSE OBJECTIVES:

The students will be able to

- Develop deep understanding of the mathematical modelling through differential equations, systems of ordinary differential equations and difference equations.
- Analyze the long-term behaviour of discrete and continuous dynamical systems numerically and graphically using Spreadsheet.

COURSE OUTCOMES:

On the successful completion of the course, the students will be able to

CO	CO Statement	Knowledge
Number		Level
		(K1-K4)
CO1	Develop the knowledge about Mathematical Modelling	K2
CO2	Understand and apply the concepts of Mathematical Modelling	K3
	through ordinary differential equations	
CO3	Apply the methods of Mathematical Modelling through systems	K3
	of ordinary differential equations	
CO4	Evaluate the problems on Difference equation	K3
CO5	Acquire the knowledge on applications of Partial Differential	K3
	Equation	

Knowledge Level: K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze.

MAPPING WITH PROGRAMME OUTCOMES:

С	PO1	PO2	PO3	PO4	PO5	PO6
CO1	S	М	М	S	М	М
CO2	S	М	S	S	S	S
CO3	S	М	S	S	S	М
CO4	S	М	S	S	S	S
CO5	S	М	S	S	S	S

S- Strong: M- Medium: L- Low

UNIT - I: MATHEMATICAL MODELLING: NEED, TECHNIQUES,

CLASSIFICATIONS AND SIMPLE ILLUSTRATIONS

Simple Techniques requiring Mathematical Modelling – The Technique of Mathematical Modelling – Classification of Mathematical Models – Some Characteristics of Mathematical Models.

(Chapter 1- Sections 1.1-1.4)

UNIT - II: MATHEMATICAL MODELLING THROUGH ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

Mathematical Modelling through Differential Equations – Linear Growth and Decay Models – Non-Linear Growth and Decay Models.

(Chapter 2- Sections 2.1-2.3)

UNIT - III: MATHEMATICAL MODELLING THROUGH SYSTEMS OFORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER6 Hours

Mathematical Modelling in Population Dynamics – Mathematical Modelling of Epidemics through Systems of Ordinary Differential Equations of First Order.

(Chapter 3- Sections 3.1-3.2)

UNIT - IV: MATHEMATICAL MODELLING THROUGH DIFFERENCE

EQUATIONS

The Need for Mathematical Modelling through Difference equations; some simple models-Basic Theory of linear difference equation with constant coefficients-Mathematical

Modelling through Difference equation in finance.

(Chapter 5- Sections 5.1-5.3)

UNIT - V: MATHEMATICAL MODELLING THROUGH PARTIAL

DIFFERENTIAL EQUATIONS

Situations giving rise to partial Differential equations Models-Mass Balance Equations: First Method of getting PDE models-Momentum-Balance equations.

(Chapter 6- Sections 6.1-6.3)

TEXT BOOK

S.NO	AUTHORS	TITLE	PUBLISHERS	YEAR OF
				PUBLICATION
1.	J.N. Kapur	Mathematical	New Age	2000
		Modelling	International (P)	
		-	Ltd., Publishers,	

6 Hours

6 Hours

6 Hours

REFERENCE BOOKS

S.NO	AUTHORS	TITLE	PUBLISHER S	YEAR OF PUBLICATIO
1.	Brian Albright	Mathematical	Jones &	N
	C	Modelling with Excel	Bartlett,	2012
			Student	
			Edition,	
2.	Belinda Barnes,	Glenn Robert	Chapman &	2009
	Glenn Robert	Fulford,	Hall/CRC	
	Fulford	Mathematical		
		Modelling		
		with case studies		
3.	Dilwyn Edwards,	Guide Mathematical	Palgrave,	2007
	Mike Hamson	Modelling	St.Martin's	
			Press, LLC	1005
4.	Glenn Fulford,	Modelling with	Cambridge	1997
	Peter Forrester,	Differential and	University	
	Arthur Jones	Difference Equations	Press	1000
5.	R.RobertHuckfeldt	Dynamic modelling	SAGE	1982
	, C.W.kohfeld,	An Introduction	Publications	
	Thomas W.Likens			2004
6.	Allman, E.S, and	Mathematical models	Cambridge	2004
	J.A.RhodesJ.A.Rh	in Biology	University	
_	odes		Press	1000
7.	M.M.Meerschaert	Mathematical	San Diego,	1999
		Modeling, 2nd	CA Academic	
		edition	press	

WEB RESOURCE

https://people.maths.bris.ac.uk/~madjl/course_text.pdf

TEACHING METHODOLOGY

- 1. Class room Teaching
- 2. Assignments
- 3. Seminars
- 4. Discussions
- 5. PPT Presentations
- 6. Computer programming

SYLLABUS DESIGNER

Dr. N. Nithyapriya, Assistant Professor of Mathematics.